Skip to main content
Log in

Tactical supply chain planning models with inherent flexibility: definition and review

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Supply chains (SCs) can be managed at many levels. The use of tactical SC planning models with multiple flexibility options can help manage the usual operations efficiently and effectively, whilst improve the SC resiliency in response to inherent environmental uncertainties. This paper defines tactical SC flexibility and identifies tactical flexibility measures and options for development of flexible SC planning models. A classification of the existing literature of SC planning is introduced that highlights the characteristics of published flexibility inclusive models. Additional classifications from the reviewed literature are presented based on the integration of flexibility options used, solution methods utilized, and real world applications presented. These classifications are helpful for identifying research gaps in the current literature and provide insights for future modeling and research efforts in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It is not always easy to discern Tactical from Strategic. Strategic will be defined as a concept that focuses on relatively long term management (over multiple years), with explicit and necessary inclusion of multiple functions within an organization (setting strategies). Tactical is an intermediate time length (monthly, quarterly, up to a year) and one department or function can effectively manage the situation (strategy deployment).

  2. The Scopus database is managed by Elsevier publishing. It is more comprehensive than the Web-of-Science database which would include only ISI indexed journals. Since we are focusing on peer-reviewed journals, it was felt that the Scopus database would capture the most reputable international journals, some of which may be relatively new, but influential. Scopus has been used and recommended as a good source of SC peer reviewed articles (Chicksand et al. 2012). Although, by no means exhaustive, we can be pretty confident that the SCOPUS database provides a comprehensive and reliable source for academic literature reviews. The Scopus coverage details including access to tens of millions of peer reviewed journal articles can be found at: http://www.info.sciverse.com/scopus/scopus-in-detail/facts. One of the limitations of Scopus is limited access to pre-1996 peer reviewed journal articles.

References

  • Alemany, M. M. E., Boj, J. J., Mula, J., & Lario, F.-C. (2010). Mathematical programming model for centralised master planning in ceramic tile supply chains. International Journal of Production Research, 48(17), 5053–5074.

    Article  Google Scholar 

  • Aliev, R. A., Fazlollahi, B., Guirimov, B. G., & Aliev, R. R. (2007). Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Information Sciences, 177(20), 4241–4255.

    Article  Google Scholar 

  • Alonso-Ayuso, A., Escudero, L. F., Garin, A., Ortuno, M. T., & Perez, G. (2003). An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming. Journal of Global Optimization, 26(1), 97–124.

    Article  Google Scholar 

  • Armentano, V. A., Shiguemoto, A. L., & Løkketangen, A. (2011). Tabu search with path relinking for an integrated production–distribution problem. Computers & Operations Research, 38(8), 1199–1209.

    Article  Google Scholar 

  • Aydinel, M., Sowlati, T., Cerda, X., Cope, E., & Gerschman, M. (2008). Optimization of production allocation and transportation of customer orders for a leading forest products company. Mathematical and Computer Modelling, 48(7–8), 1158–1169.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2013). Flexibility in reverse logistics: A framework and evaluation approach. Journal of Cleaner Production, 47, 306–318.

    Article  Google Scholar 

  • Bashiri, M., Badri, H., & Talebi, J. (2012). A new approach to tactical and strategic planning in production–distribution networks. Applied Mathematical Modelling, 36(4), 1703–1717.

    Article  Google Scholar 

  • Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations & Production Management, 19(3), 275–292.

    Article  Google Scholar 

  • Benton, W. C. (2010). Purchasing and Supply Chain Management (2nd ed.). Irwin: McGraw-Hill.

    Google Scholar 

  • Bilgen, B. (2010). Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem. Expert Systems with Applications, 37(6), 4488–4495.

    Article  Google Scholar 

  • Borenstein, D. (1998). Intelligent decision support system for flexible manufacturing system design. Annals of Operations Research, 77, 129–156.

    Article  Google Scholar 

  • Burke, G. J., Carrillo, J. E., & Vakharia, A. J. (2007). Single versus multiple supplier sourcing strategies. European Journal of Operational Research, 182(1), 95–112.

    Article  Google Scholar 

  • Calvete, H. I., Galé, C., & Oliveros, M.-J. (2011). Bilevel model for production–distribution planning solved by using ant colony optimization. Computers & Operations Research, 38(1), 320–327.

    Article  Google Scholar 

  • Che, Z. H. (2012). A particle swarm optimization algorithm for solving unbalanced supply chain planning problems. Applied Soft Computing, 12(4), 1279–1287.

    Article  Google Scholar 

  • Che, Z. H., & Chiang, C. J. (2010). A modified Pareto genetic algorithm for multi-objective build-to-order supply chain planning with product assembly. Advances in Engineering Software, 41(7–8), 1011–1022.

    Article  Google Scholar 

  • Chen, M., & Wang, W. (1997). A linear programming model for integrated steel production and distribution planning. International Journal of Operations and Production Management, 17(6), 592–610.

    Article  Google Scholar 

  • Chen, C., Wang, B., & Lee, W. (2003). Multiobjective optimization for a multienterprise supply chain network. Industrial and Engineering Chemistry Research, 42(9), 1879–1889.

    Article  Google Scholar 

  • Chern, C. C., & Hsieh, J. S. (2007). A heuristic algorithm for master planning that satisfies multiple objectives. Computers & Operations Research, 34(11), 3491–3513.

    Article  Google Scholar 

  • Chicksand, D., Watson, G., Walker, H., Radnor, Z., & Johnston, R. (2012). Theoretical perspectives in purchasing and supply chain management: An analysis of the literature. Supply Chain Management, 17(4), 454–472.

    Article  Google Scholar 

  • Comelli, M., Gourgand, M., & Lemoine, D. (2008). A review of tactical planning models. Journal of Systems Science and Systems Engineering, 17(2), 204–229.

    Article  Google Scholar 

  • Das, K. (2011). Integrating effective flexibility measures into a strategic supply chain planning model. European Journal of Operational Research, 211(1), 170–183.

    Article  Google Scholar 

  • Dhaenens-Flipo, C., & Finke, G. (2001). An integrated model for an industrial production-distribution problem. IIE Transactions, 33(9), 705–715.

    Google Scholar 

  • Dogan, K., & Goetschalckx, M. (1999). A primal decomposition method for the integrated design of multi-period production–distribution systems. IIE Transactions, 31(11), 1027–1036.

    Google Scholar 

  • Ekşioğlu, S. D., Edwin Romeijn, H., & Pardalos, P. M. (2006). Cross-facility management of production and transportation planning problem. Computers & Operations Research, 33(11), 3231–3251.

    Article  Google Scholar 

  • Ekşioğlu, S. D., Ekşioğlu, B., & Romeijn, H. E. (2007). A Lagrangean heuristic for integrated production and transportation planning problems in a dynamic, multi-item, two-layer supply chain. IIE Transactions, 39(2), 191–201.

    Article  Google Scholar 

  • Fahimnia, B., Farahani, R. Z., Marian, R., & Luong, L. (2013a). A review and critique on integrated production–distribution planning models and techniques. Journal of Manufacturing Systems, 32(1), 1–19.

    Article  Google Scholar 

  • Fahimnia, B., Farahani, R. Z., & Sarkis, J. (2013b). Integrated aggregate supply chain planning using memetic algorithm—A performance analysis case study. International Journal of Production Research, 51(18), 5354–5373.

    Article  Google Scholar 

  • Fahimnia, B., Luong, L., & Marian, R. (2012). Genetic algorithm optimisation of an integrated aggregate production–distribution plan in supply chains. International Journal of Production Research, 50(1), 81–96.

    Article  Google Scholar 

  • Garavelli, A. C. (2003). Flexibility configurations for the supply chain management. International Journal of Production Economics, 85(2), 141–153.

    Article  Google Scholar 

  • Gen, M., & Syarif, A. (2005). Hybrid genetic algorithm for multi-time period production/distribution planning. Computers & Industrial Engineering, 48(4), 799–809.

    Article  Google Scholar 

  • Genin, P., Lamouri, S., & Thomas, A. (2008). Multi-facilities tactical planning robustness with experimental design. Production Planning & Control, 19(2), 171–182.

    Article  Google Scholar 

  • Georgiadis, M. C., Tsiakis, P., Longinidis, P., & Sofioglou, M. K. (2011). Optimal design of supply chain networks under uncertain transient demand variations. Omega, 39(3), 254–272.

    Article  Google Scholar 

  • Giachetti, R. E., Martinez, L. D., Sáenz, O. A., & Chen, C.-S. (2003). Analysis of the structural measures of flexibility and agility using a measurement theoretical framework. International Journal of Production Economics, 86(1), 47–62.

    Article  Google Scholar 

  • Gong, Z. (2008). An economic evaluation model of supply chain flexibility. European Journal of Operational Research, 184(2), 745–758.

    Article  Google Scholar 

  • Gosling, J., Purvis, L., & Naim, M. M. (2010). Supply chain flexibility as a determinant of supplier selection. International Journal of Production Economics, 128(1), 11–21.

    Article  Google Scholar 

  • Guillén, G., Mele, F. D., Espuña, A., & Puigjaner, L. (2006). Addressing the design of chemical supply chains under demand uncertainty. In W. Marquardt & C. Pantelides (Eds.), Computer aided chemical engineering (Vol. 21, pp. 1095–1100). Amsterdam: Elsevier.

    Google Scholar 

  • Gunasekaran, A. (1999). Agile manufacturing: A framework for research and development. International Journal of Production Economics, 62(1–2), 87–105.

    Article  Google Scholar 

  • Gunnarsson, H., & Rönnqvist, M. (2008). Solving a multi-period supply chain problem for a pulp company using heuristics—An application to Södra Cell AB. International Journal of Production Economics, 116(1), 75–94.

    Article  Google Scholar 

  • Gunnarsson, H., Rönnqvist, M., & Carlsson, D. (2007). Integrated production and distribution planning for Södra Cell AB. Journal of Mathematical Modelling and Algorithms, 6(1), 25–45.

    Article  Google Scholar 

  • Gupta, A., & Maranas, C. D. (2000). A two-stage modeling and solution framework for multisite midterm planning under demand uncertainty. Industrial and Engineering Chemistry Research, 39(10), 3799–3813.

    Article  Google Scholar 

  • Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty in supply chain planning. Computers & Chemical Engineering, 27(8–9), 1219–1227.

    Article  Google Scholar 

  • Gupta, A., Maranas, C. D., & McDonald, C. M. (2000). Mid-term supply chain planning under demand uncertainty: Customer demand satisfaction and inventory management. Computers & Chemical Engineering, 24(12), 2613–2621.

    Article  Google Scholar 

  • Hodder, J., & Triantis, A. (1993). Valuing flexibility: An impulse control framework. Annals of Operations Research, 45(1), 109–130.

    Article  Google Scholar 

  • Jackson, J. R., & Grossmann, I. E. (2003). Temporal decomposition scheme for nonlinear multisite production planning and distribution models. Industrial and Engineering Chemistry Research, 42(13), 3045–3055.

    Article  Google Scholar 

  • Jang, Y.-J., Jang, S.-Y., Chang, B.-M., & Park, J. (2002). A combined model of network design and production/distribution planning for a supply network. Computers & Industrial Engineering, 43(1–2), 263–281.

    Article  Google Scholar 

  • Jayaraman, V., & Pirkul, H. (2001). Planning and coordination of production and distribution facilities for multiple commodities. European Journal of Operational Research, 133(2), 394–408.

    Article  Google Scholar 

  • Jolayemi, J. K., & Olorunniwo, F. O. (2004). A deterministic model for planning production quantities in a multi-plant, multi-warehouse environment with extensible capacities. International Journal of Production Economics, 87(2), 99–113.

    Article  Google Scholar 

  • Jordan, W. C., & Graves, S. C. (1995). Principles on the benefits of manufacturing process flexibility. Management Science, 41(4), 577–594.

    Article  Google Scholar 

  • Kanyalkar, A., & Adil, G. (2007). Aggregate and detailed production planning integrating procurement and distribution plans in a multi-site environment. International Journal of Production Research, 45(22), 5329–5353.

    Article  Google Scholar 

  • Kanyalkar, A., & Gajendra, K. (2010). A robust optimisation model for aggregate and detailed planning of a multi-site procurement-production-distribution system. International Journal of Production Research, 48(3), 635–656.

    Article  Google Scholar 

  • Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: A critical review. European Journal of Operational Research, 203(2), 283–293.

    Article  Google Scholar 

  • Kopanos, G. M., Puigjaner, L., & Georgiadis, M. C. (2012). Simultaneous production and logistics operations planning in semicontinuous food industries. Omega, 40(5), 634–650.

    Article  Google Scholar 

  • Koste, L. L., & Malhotra, M. K. (1999). A theoretical framework for analyzing the dimensions of manufacturing flexibility. Journal of Operations Management, 18(1), 75–93.

    Article  Google Scholar 

  • Koste, L. L., Malhotra, M. K., & Sharma, S. (2004). Measuring dimensions of manufacturing flexibility. Journal of Operations Management, 22(2), 171–196.

    Article  Google Scholar 

  • Kumar, V. (1988). Measurement of loading and operations flexibility in flexible manufacturing systems: An information-theoretic approach. Annals of Operations Research, 15(1), 65–80.

    Article  Google Scholar 

  • Lababidi, H. M. S., Ahmed, M. A., Alatiqi, I. M., & Al-Enzi, A. F. (2004). Optimizing the supply chain of a petrochemical company under uncertain operating and economic conditions. Industrial and Engineering Chemistry Research, 43(1), 63–73.

    Article  Google Scholar 

  • Lee, Y. H., & Kim, S. H. (2002). Production–distribution planning in supply chain considering capacity constraints. Computers & Industrial Engineering, 43(1–2), 169–190.

    Article  Google Scholar 

  • Lee, Y. H., Kim, S. H., & Moon, C. (2002). Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13(1), 35–46.

    Article  Google Scholar 

  • Lei, L., Liu, S., Ruszczynski, A., & Park, S. (2006). On the integrated production, inventory, and distribution routing problem. IIE Transactions, 38(11), 955–970.

    Article  Google Scholar 

  • Lejeune, M. A. (2006). A variable neighborhood decomposition search method for supply chain management planning problems. European Journal of Operational Research, 175(2), 959–976.

    Article  Google Scholar 

  • Lejeune, M. A., & Ruszczyński, A. (2007). An efficient trajectory method for probabilistic production-inventory-distribution problems. Operations Research, 55(2), 378–394.

    Article  Google Scholar 

  • Liang, T.-F. (2008). Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Computers & Industrial Engineering, 55(3), 676–694.

    Article  Google Scholar 

  • Liang, T.-F. (2011). Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains. Information Sciences, 181(4), 842–854.

    Article  Google Scholar 

  • Liang, T.-F., & Cheng, H.-W. (2009). Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains. Expert Systems with Applications, 36(2, Part 2), 3367–3377.

    Article  Google Scholar 

  • Lim, S. J., Jeong, S. J., Kim, K. S., & Park, M. W. (2006). A simulation approach for production-distribution planning with consideration given to replenishment policies. The International Journal of Advanced Manufacturing Technology, 27(5), 593–603.

    Article  Google Scholar 

  • Lin, C–. C., & Wang, T.-H. (2011). Build-to-order supply chain network design under supply and demand uncertainties. Transportation Research Part B, 45(8), 1162–1176.

    Article  Google Scholar 

  • Liu, S., & Papageorgiou, L. G. (2012). Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega, 41(2), 369–382.

    Article  Google Scholar 

  • Lummus, R. R., Duclos, L. K., & Vokurka, R. J. (2003). Supply chain flexibility: Building a new model. Global Journal of Flexible Systems Management, 4(4), 1–13.

    Google Scholar 

  • McDonald, C. M., & Karimi, I. A. (1997). Planning and scheduling of parallel semicontinuous processes. 1. Production planning. Industrial and Engineering Chemistry Research, 36(7), 2691–2700.

    Article  Google Scholar 

  • Meijboom, B., & Obel, B. (2007). Tactical coordination in a multi-location and multi-stage operations structure: A model and a pharmaceutical company case. Omega, 35(3), 258–273.

    Article  Google Scholar 

  • Merschmann, U., & Thonemann, U. W. (2011). Supply chain flexibility, uncertainty and firm performance: An empirical analysis of German manufacturing firms. International Journal of Production Economics, 130(1), 43–53.

    Article  Google Scholar 

  • Min, H., & Zhou, G. (2002). Supply chain modeling: Past, present and future. Computers & Industrial Engineering, 43(1–2), 231–249.

    Article  Google Scholar 

  • Mirzapour Al-e-hashem, S. M. J., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International Journal of Production Economics, 134(1), 28–42.

    Article  Google Scholar 

  • Mohamed, Z. M. (1999). An integrated production-distribution model for a multi-national company operating under varying exchange rates. International Journal of Production Economics, 58(1), 81–92.

    Article  Google Scholar 

  • Mohamed, Z. M., & Youseff, M. (2004). A production, distribution and investment model for a multinational company. Journal of Manufacturing Technology Management, 15(6), 495–510.

    Article  Google Scholar 

  • Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377–390.

    Article  Google Scholar 

  • Narain, R., Yadav, R. C., Sarkis, J., & Cordeiro, J. J. (2000). The strategic implications of flexibility in manufacturing systems. International Journal of Agile Management Systems 2(3), 202–213.

    Article  Google Scholar 

  • Nikolopoulou, A., & Ierapetritou, M. G. (2012). Hybrid simulation based optimization approach for supply chain management. Computers & Chemical Engineering. doi:10.1016/j.compchemeng.2012.06.045.

    Google Scholar 

  • Oh, H.-C., & Karimi, I. A. (2006). Global multiproduct production–distribution planning with duty drawbacks. AIChE Journal, 52(2), 595–610.

    Article  Google Scholar 

  • Ouhimmou, M., D’Amours, S., Beauregard, R., Ait-Kadi, D., & Chauhan, S. S. (2008). Furniture supply chain tactical planning optimization using a time decomposition approach. European Journal of Operational Research, 189(3), 952–970.

    Article  Google Scholar 

  • Pal, A., Chan, F. T. S., Mahanty, B., & Tiwari, M. K. (2011). Aggregate procurement, production, and shipment planning decision problem for a three-echelon supply chain using swarm-based heuristics. International Journal of Production Research, 49(10), 2873–2905.

    Article  Google Scholar 

  • Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing. Computers & Operations Research, 37(4), 668–683.

    Article  Google Scholar 

  • Park, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205–1224.

    Article  Google Scholar 

  • Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2011). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011–3020.

    Article  Google Scholar 

  • Peidro, D., Mula, J., Jiménez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65–80.

    Article  Google Scholar 

  • Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2009a). Quantitative models for supply chain planning under uncertainty: A review. The International Journal of Advanced Manufacturing Technology, 43(3), 400–420.

    Article  Google Scholar 

  • Peidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009b). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640–2657.

    Article  Google Scholar 

  • Pujawan, I. N. (2004). Assessing supply chain flexibility: A conceptual framework and case study. International Journal of Integrated Supply Management, 1(1), 79–97.

    Article  Google Scholar 

  • Roghanian, E., Sadjadi, S. J., & Aryanezhad, M. B. (2007). A probabilistic bi-level linear multi-objective programming problem to supply chain planning. Applied Mathematics and Computation, 188(1), 786–800.

    Article  Google Scholar 

  • Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581–598.

    Article  Google Scholar 

  • Safaei, A. S., Moattar Husseini, S. M., Farahani, R. Z., Jolai, F., & Ghodsypour, S. H. (2010). Integrated multisite production-distribution planning in supply chain by hybrid modelling. International Journal of Production Research, 48(14), 4043–4069.

    Article  Google Scholar 

  • Sakawa, M., Nishizaki, I., & Uemura, Y. (2001). Fuzzy programming and profit and cost allocation for a production and transportation problem. European Journal of Operational Research, 131(1), 1–15.

    Article  Google Scholar 

  • Sánchez, A. M., & Pérez, M. P. (2005). Supply chain flexibility and firm performance: A conceptual model and empirical study in the automotive industry. International Journal of Operations & Production Management, 25(7), 681–700.

    Article  Google Scholar 

  • Sawhney, R. (2006). Interplay between uncertainty and flexibility across the value-chain: Towards a transformation model of manufacturing flexibility. Journal of Operations Management, 24(5), 476–493.

    Article  Google Scholar 

  • Schütz, P., & Tomasgard, A. (2011). The impact of flexibility on operational supply chain planning. International Journal of Production Economics, 134(2), 300–311.

    Article  Google Scholar 

  • Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: A fuzzy goal programming approach. Transportation Research Part E, 44(3), 396–419.

    Article  Google Scholar 

  • Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710.

    Article  Google Scholar 

  • Shen, Z.-J. M. (2006). A profit-maximizing supply chain network design model with demand choice flexibility. Operations Research Letters, 34(6), 673–682.

    Article  Google Scholar 

  • Slack, N. (1983). Flexibility as a manufacturing objective. International Journal of Operations & Production Management, 3(3), 4–13.

    Article  Google Scholar 

  • Sodhi, M. S., & Tang, C. S. (Eds.) (2012). Strategic approaches for mitigating supply chain risks. In Managing supply chain risk. International series in operations research & management science (Vol. 172, pp. 95–108). Boston: Springer.

  • Souza, G. C., Zhao, Z., Chen, M., & Ball, M. O. (2004). Coordinating sales and raw material discounts in a global supply chain. Production and Operations Management, 13(1), 34–45.

    Article  Google Scholar 

  • Stevenson, M., & Spring, M. (2007). Flexibility from a supply chain perspective: Definition and review. International Journal of Operations & Production Management, 27(7), 685–713.

    Article  Google Scholar 

  • Swafford, P. M., Ghosh, S., & Murthy, N. (2006). The antecedents of supply chain agility of a firm: Scale development and model testing. Journal of Operations Management, 24(2), 170–188.

    Article  Google Scholar 

  • Terrazas-Moreno, S., & Grossmann, I. E. (2011). A multiscale decomposition method for the optimal planning and scheduling of multi-site continuous multiproduct plants. Chemical Engineering Science, 66(19), 4307–4318.

    Article  Google Scholar 

  • Torabi, S. A., & Hassini, E. (2009). Multi-site production planning integrating procurement and distribution plans in multi-echelon supply chains: An interactive fuzzy goal programming approach. International Journal of Production Research, 47(19), 5475–5499.

    Article  Google Scholar 

  • Torabi, S. A., & Moghaddam, M. (2011). Multi-site integrated production-distribution planning with trans-shipment: A fuzzy goal programming approach. International Journal of Production Research, 50(6), 1726–1748.

    Article  Google Scholar 

  • Tsai, J.-F. (2007). An optimization approach for supply chain management models with quantity discount policy. European Journal of Operational Research, 177(2), 982–994.

    Article  Google Scholar 

  • Upton, D. M. (1995). What really makes factories flexible? Harvard Business Review, 73(4), 74–84.

    Google Scholar 

  • Varthanan, P. A., Murugan, N., & Kumar, G. M. (2012a). A simulation based heuristic discrete particle swarm algorithm for generating integrated production–distribution plan. Applied Soft Computing, 12(9), 3034–3050.

    Article  Google Scholar 

  • Varthanan, P., Murugan, N., Kumar, G., & Parameswaran, S. (2012b). Development of simulation-based AHP-DPSO algorithm for generating multi-criteria production–distribution plan. The International Journal of Advanced Manufacturing Technology, 60(1–4), 373–396.

    Article  Google Scholar 

  • Vickery, S. N., Calantone, R., & Dröge, C. (1999). Supply chain flexibility: An empirical study. Journal of Supply Chain Management, 35(3), 16–24.

    Article  Google Scholar 

  • Yi, C. Y., Ngai, E. W. T., & Moon, K.-L. (2011). Supply chain flexibility in an uncertain environment: Exploratory findings from five case studies. Supply Chain Management, 16(4), 271–283.

    Article  Google Scholar 

  • Yılmaz, P., & Çatay, B. (2006). Strategic level three-stage production distribution planning with capacity expansion. Computers & Industrial Engineering, 51(4), 609–620.

    Article  Google Scholar 

  • You, F., & Grossmann, I. E. (2008). Design of responsive supply chains under demand uncertainty. Computers & Chemical Engineering, 32(12), 3090–3111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Fahimnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmaeilikia, M., Fahimnia, B., Sarkis, J. et al. Tactical supply chain planning models with inherent flexibility: definition and review. Ann Oper Res 244, 407–427 (2016). https://doi.org/10.1007/s10479-014-1544-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1544-3

Keywords

Navigation