Skip to main content
Log in

A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We present a branch-and-bound algorithm for discretely-constrained mathematical programs with equilibrium constraints (DC-MPEC). This is a class of bilevel programs with an integer program in the upper-level and a complementarity problem in the lower-level. The algorithm builds on the work by Gabriel et al. (Journal of the Operational Research Society 61(9):1404–1419, 2010) and uses Benders decomposition to form a master problem and a subproblem. The new dynamic partition scheme that we present ensures that the algorithm converges to the global optimum. Partitioning is done to overcome the non-convexity of the Benders subproblem. In addition Lagrangean relaxation provides bounds that enable fathoming in the branching tree and warm-starting the Benders algorithm. Numerical tests show significantly reduced solution times compared to the original algorithm. When the lower level problem is stochastic our algorithm can easily be further decomposed using scenario decomposition. This is demonstrated on a realistic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Subroutine 1
Subroutine 2
Subroutine 3
Fig. 4

Similar content being viewed by others

References

  • Audet, C., Savard, G., & Zghal, W. (2007). New branch-and-cut algorithm for bilevel linear programming. Journal of Optimization Theory and Applications, 134, 353–370.

    Article  Google Scholar 

  • Bard, J. F., & Moore, J. T. (1990). A branch and bound algorithm for the bilevel programming problem. SIAM Journal on Scientific and Statistical Computing, 11(2), 281–292.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  • Carøe, C. C., & Schultz, R. (1999). Dual decomposition in stochastic integer programming. Operations Research Letters, 24, 37–45.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations Research, 153, 235–256.

    Article  Google Scholar 

  • Conejo, A. J., Castillo, E., Minguez, R., & García-Bertrand, R. (2006). Decomposition techniques in mathematical programming: engineering and science application. Berlin: Springer. ISBN: 978-3-540-27685-2.

    Google Scholar 

  • Dempe, S. (2002). Foundations of bilevel programming. New York: Kluwer Academic.

    Google Scholar 

  • DeNegre, S. T., & Ralphs, T. K. (2009). A branch-and-cut algorithm for integer bilevel linear programs. Operations Research/Computer Science Interfaces, 47, 65–78.

    Google Scholar 

  • Falk, J. E. (1969). Lagrange multipliers and nonconvex programs. SIAM Journal on Control, 7(4), 534–545.

    Article  Google Scholar 

  • Fortuny-Amat, J., & McCarl, B. (1981). A representation and economic interpretation of a two-level programming problem. The Journal of the Operational Research Society, 32(9), 783–792.

    Google Scholar 

  • Fukushima, M., & Lin, G.-H. (2004). Smoothing methods for mathematical programs with equilibrium constraints. In Proceedings of the ICKS’04 (pp. 206–213). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Gabriel, S. A., & Leuthold, F. U. (2010). Solving discretely-constrained MPEC problems with applications in electric power markets. Energy Economics, 32(1), 3–14.

    Article  Google Scholar 

  • Gabriel, S. A., Shim, Y., Conejo, A. J., de la Torre, S., & Garcia-Bertrand, R. (2010). A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints with applications in energy. The Journal of the Operational Research Society, 61(9), 1404–1419.

    Google Scholar 

  • Geoffrion, A. M. (1974). Lagrange relaxation for integer programming. Mathematical Programming Study, 2, 82–114.

    Article  Google Scholar 

  • Hansen, P., Jaumard, B., & Savard, G. (1992). New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13, 1194–1217.

    Article  Google Scholar 

  • Hu, J., Mitchell, J. E., Pang, J., Bennett, K. P., & Kunapuli, G. (2008). On the global solution of linear programs with linear complementarity constraints. SIAM Journal of Optimization, 19(1), 445–471.

    Article  Google Scholar 

  • Labbé, M., Marcotte, P., & Savard, G. (1998). A bilevel model of taxation and its application to optimal highway pricing. Management Science, 44(12), 1608–1622.

    Article  Google Scholar 

  • Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge: Cambridge University Press. ISBN: 0-521-57290-8.

    Book  Google Scholar 

  • Meng, Q., & Wang, X. (2011). Intermodal hub-and-spoke network design: incorporating multiple stakeholders and multi-type containers. Transportation Research. Part B, 45(4), 724–742.

    Article  Google Scholar 

  • Meng, Q., Huang, Y., & Cheu, R. L. (2009). Competitive facility location on decentralized supply chains. European Journal of Operational Research, 196, 487–499.

    Article  Google Scholar 

  • Mesbah, M., Sarvi, M., Ouveysi, I., & Currie, G. (2011). Optimization of transit priority in the transportation network using a decomposition methodology. Transportation Research. Part C, 19, 363–373.

    Article  Google Scholar 

  • Midthun, K. T. (2007). Optimization models for liberalized natural gas markets. PhD thesis 2007:205. Trondheim, Norway: Norwegian University of Science and Technology. URL: http://ntnu.diva-portal.org/smash/get/diva2:123659/FULLTEXT01.

  • Mitsos, A. (2010). Global solution of nonlinear mixed-integer bilevel programs. Journal of Global Optimization, 47(4), 557–582.

    Article  Google Scholar 

  • Moore, J. T., & Bard, J. F. (1990). The mixed integer linear bilevel programming problem. Operations Research, 38, 911–921.

    Article  Google Scholar 

  • Outrata, J., Kocvara, M., & Zowe, J. (1998). Nonsmooth approach to optimization problems with equilibrium constraints: theory, applications and numerical results. Boston: Kluwer Academic. ISBN: 978-0-7923-5170-2.

    Book  Google Scholar 

  • Rockafellar, R. T., & Wets, R. J.-B. (1976). Nonanticipativity and l1-martingales in stochastic optimization problems. Mathematical Programming Study, 6, 170–187.

    Article  Google Scholar 

  • Saharidis, G. K., & Ierapetritou, M. G. (2009). Resolution method for mixed bilevel linear problems based on decomposition technique. Journal of Global Optimization, 44, 29–51.

    Article  Google Scholar 

  • Saharidis, G. K., & Ierapetritou, M. G. (2010). Improving Benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Computers and Chemical Engineering, 34, 1237–1245.

    Article  Google Scholar 

  • Saharidis, G. K., Boile, M., & Theofanis, S. (2011). Initialization of the Benders master problem using valid inequalities applied to fixed-charge network problems. Expert Systems with Applications, 38, 6627–6636.

    Article  Google Scholar 

  • van Roy, T. J. (1983). Cross decomposition for mixed integer programming. Mathematical Programming, 25, 46–63.

    Article  Google Scholar 

  • van Roy, T. J. (1986). A cross decomposition algorithm for capacitated facility location. Operations Research, 34(1), 145–163.

    Article  Google Scholar 

  • Wang, D. Z. W., & Lo, H. K. (2008). Multi-fleet ferry service network design with passenger preferences for differential services. Transportation Research. Part B, 42, 798–822.

    Article  Google Scholar 

  • Wen, U. P., & Yang, Y. H. (1990). Algorithms for solving the mixed integer two-level linear programming problem. Computers and Operations Research, 17(2), 133–142.

    Article  Google Scholar 

Download references

Acknowledgements

The project is partially supported by the Research Council of Norway under grant 175967/S30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marte Fodstad.

Appendix

Appendix

Theorem 2

The solution of (SP) from the Benders decomposition algorithm provides an upper bound on z MILP=d T x+d T y for any given partition, and the optimal solution z MILP=d T x +d T y for any partition where α(x) is convex.

Proof

By the assumption (A2) any x (v) which is a feasible in (MP) is also feasible in (MILP). For a given x (v) the feasible region of (SP) is identical to the feasible region for the variables \(y, z, \bar {b}\) and \(\tilde{b}\) of (MILP), which makes a solution of (SP) feasible in (MILP). And since the function z up(x (v)) is identical to the objective function of (MILP), it is an upper bound of (MILP). Benders (1962) proves that Benders decomposition algorithm converges to the optimal solution in the case of a convex α(x). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, Y., Fodstad, M., Gabriel, S.A. et al. A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints. Ann Oper Res 210, 5–31 (2013). https://doi.org/10.1007/s10479-012-1191-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1191-5

Keywords

Navigation