Skip to main content
Log in

Multicut Benders decomposition algorithm for process supply chain planning under uncertainty

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we present a multicut version of the Benders decomposition method for solving two-stage stochastic linear programming problems, including stochastic mixed-integer programs with only continuous recourse (two-stage) variables. The main idea is to add one cut per realization of uncertainty to the master problem in each iteration, that is, as many Benders cuts as the number of scenarios added to the master problem in each iteration. Two examples are presented to illustrate the application of the proposed algorithm. One involves production-transportation planning under demand uncertainty, and the other one involves multiperiod planning of global, multiproduct chemical supply chains under demand and freight rate uncertainty. Computational studies show that while both the standard and the multicut versions of the Benders decomposition method can solve large-scale stochastic programming problems with reasonable computational effort, significant savings in CPU time can be achieved by using the proposed multicut algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald, T. W., Buchanan, C. S., McKinnon, K. I. M., & Thomas, L. C. (1999). Nested Benders decomposition and dynamic programming for reservoir optimisation. The Journal of the Operational Research Society, 50, 468–479.

    Google Scholar 

  • Bahn, O., Dumerle, O., Goffin, J. L., & Vial, J. P. (1995). A cutting plane method from analytic centers for stochastic-programming. Mathematical Programming, 69, 45–73.

    Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Birge, J. R., & Louveaux, F. V. (1988). A multicut algorithm for two-stage stochastic linear programs. European Journal of Operational Research, 34, 384–392.

    Article  Google Scholar 

  • Contreras, I., Cordeau, J. F., & Laporte, G. (2010). Benders decomposition for large-scale uncapacitated hub location. Operations Research, in press.

  • Escudero, L. F., Garín, A., Merino, M., & Pérez, G. (2007). A two-stage stochastic integer programming approach as a mixture of branch-and-fix coordination and Benders decomposition schemes. Annals of Operations Research, 152, 395–420.

    Article  Google Scholar 

  • Fragniere, E., Gondzio, J., & Vial, J. P. (2000). Building and solving large-scale stochastic programs on an affordable distributed computing system. Annals of Operations Research, 99, 167–187.

    Article  Google Scholar 

  • Higle, J. L., & Sen, S. (1991). Stochastic decomposition—an algorithm for 2-stage linear-programs with recourse. Mathematics of Operations Research, 16, 650–669.

    Article  Google Scholar 

  • Infanger, G. (1993). Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Annals of Operations Research, 39, 69–95.

    Article  Google Scholar 

  • Infanger, G. (1994). Planning under uncertainty: solving large-scale stochastic linear programs. Danvers: Boyd and Fraser.

    Google Scholar 

  • Latorre, J. M., Cerisola, S., Ramos, A., & Palacios, R. (2009). Analysis of stochastic problem decomposition algorithms in computational grids. Annals of Operations Research, 166(1), 355–373.

    Article  Google Scholar 

  • Linderoth, J., Shapiro, A., & Wright, S. (2006). The empirical behavior of sampling methods for stochastic programming. Annals of Operations Research, 142, 215–241.

    Article  Google Scholar 

  • Linderoth, J., & Wright, S. (2003). Decomposition algorithms for stochastic programming on a computational grid. Computational Optimization and Applications, 24, 207–250.

    Article  Google Scholar 

  • Miller, N., & Ruszczyński, A. (2010). Risk-averse two-stage stochastic linear programming: modeling and decomposition. Operations Research, doi:10.1287/opre.1100.0847.

    Google Scholar 

  • Mulvey, J. M., & Ruszczynski, A. J. (1995). A new scenario decomposition method for large-scale stochastic optimization. Operations Research, 43, 477–490.

    Article  Google Scholar 

  • Ntaimo, L. (2010). Disjunctive decomposition for two-stage stochastic mixed-binary programs with random recourse. Operations Research, 58, 229–243.

    Article  Google Scholar 

  • Rosenthal, R. E. (2010). GAMS—a user’s manual. Washington: GAMS Development Corp.

    Google Scholar 

  • Ruszczynski, A. (1993). Parallel decomposition of multistage stochastic-programming problems. Mathematical Programming, 58, 201–228.

    Article  Google Scholar 

  • Ruszczyński, A. (1997). Decomposition methods in stochastic programming. Mathematical Programming, 79, 333–353.

    Google Scholar 

  • Saharidis, G. K. D., Boile, M., & Theofanis, S. (2011). Initialization of the Benders master problem using valid inequalities applied to fixed-charge network problems. Expert Systems with Applications, 38, 6627–6636.

    Article  Google Scholar 

  • Saharidis, G. K. D., & Ierapetritou, M. G. (2010). Improving Benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Computers & Chemical Engineering, 34, 1237.

    Article  Google Scholar 

  • Saharidis, G. K. D., Minoux, M., & Ierapetritou, M. G. (2010). Accelerating Bender’s method using covering cut bundle generation. International Transactions in Operational Research, 17, 221.

    Article  Google Scholar 

  • Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96–115.

    Article  Google Scholar 

  • Sen, S. (1993). Subgradient decomposition and differentiability of the recourse function of a 2-stage stochastic linear program. Operations Research Letters, 13, 143–148.

    Article  Google Scholar 

  • Sen, S., Zhou, Z., & Huang, K. (2009). Enhancements of two-stage stochastic decomposition. Computers & Operations Research, 36, 2434–2439.

    Article  Google Scholar 

  • Shapiro, A. (2000). Stochastic programming by Monte Carlo simulation methods. Stochastic Programming E-Prints Series, 03.

  • Shapiro, A. (2008). Stochastic programming approach to optimization under uncertainty. Mathematical Programming, 112, 183–220.

    Article  Google Scholar 

  • Shapiro, A., & Homem-de-Mello, T. (1998). A simulation-based approach to two-stage stochastic programming with recourse. Mathematical Programming, 81, 301–325.

    Google Scholar 

  • Trukhanov, S., Ntaimo, L., & Schaefer, A. (2010). Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. European Journal of Operational Research, 206, 395–406.

    Article  Google Scholar 

  • Van Slyke, R. M., & Wets, R. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics, 17, 638–663.

    Article  Google Scholar 

  • Wassick, J. M. (2009). Enterprise-wide optimization in an integrated chemical complex. Computers & Chemical Engineering, 33, 1950–1963.

    Article  Google Scholar 

  • You, F., Wassick, J. M., & Grossmann, I. E. (2009). Risk management for global supply chain planning under uncertainty: models and algorithms. AIChE Journal, 55, 931–946.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio E. Grossmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, F., Grossmann, I.E. Multicut Benders decomposition algorithm for process supply chain planning under uncertainty. Ann Oper Res 210, 191–211 (2013). https://doi.org/10.1007/s10479-011-0974-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0974-4

Keywords

Navigation