Skip to main content
Log in

Analysis of stochastic problem decomposition algorithms in computational grids

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Stochastic programming usually represents uncertainty discretely by means of a scenario tree. This representation leads to an exponential growth of the size of stochastic mathematical problems when better accuracy is needed. Trying to solve the problem as a whole, considering all scenarios together, yields to huge memory requirements that surpass the capabilities of current computers. Thus, decomposition algorithms are employed to divide the problem into several smaller subproblems and to coordinate their solution in order to obtain the global optimum. This paper analyzes several decomposition strategies based on the classical Benders decomposition algorithm, and applies them in the emerging computational grid environments. Most decomposition algorithms are not able to take full advantage of all the computing power available in a grid system because of unavoidable dependencies inherent to the algorithms. However, a special decomposition method presented in this paper aims at reducing dependency among subproblems, to the point where all the subproblems can be sent simultaneously to the grid. All algorithms have been tested in a grid system, measuring execution times required to solve standard optimization problems and a real-size hydrothermal coordination problem. Numerical results are shown to confirm that this new method outperforms the classical ones when used in grid computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, P. G. (1983). A nested decomposition approach for solving staircase linear programs. In Systems Optimization Laboratory. Department of Operations Research, Stanford University, SOL 83-4, June 1983.

  • Anstreicher, K., Brixius, N., Goux, J.-P., & Linderoth, J. T. (2002). Solving large quadratic assignment problems on computational grids. Mathematical Programming, Series B, 91, 563–588.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partition procedures for solving mixed variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  • Birge, J. R., Dempster, M. A., Gassmann, H. I., Gunn, E. A., King, A. J., & Wallace, S. (1987). A standard input format for multiperiod stochastic linear programs. COAL (Mathematical Programming Society, Committee on Algorithms) Newsletter, 17.

  • Birge, J. R., Donohue, C. J., Holmes, D. F., & Svintsitski, O. G. (1996). A parallel implementation of the nested decomposition algorithm for multistage stochastic linear programs. Mathematical Programming, 75, 327–352.

    Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. Berlin: Springer.

    Google Scholar 

  • Bixby, R. E., & Martin, A. (2000). Parallelizing the dual simplex method. Informs Journal on Computing, 12(A), 45–56.

    Article  Google Scholar 

  • Boduroglu, I. (1997). Scalable massively parallel simplex algorithms for block-structured LP problems. Ph.D. Thesis, Columbia University, New York.

  • Cerisola, S., & Ramos, A. (2000). Node aggregation in stochastic nested Benders decomposition applied to hydrothermal coordination. In 6th International conference on probabilistic methods applied to power systems (PMAPS), Madeira, Portugal, 2000.

  • Chen, Q., Ferris, M. C., & Linderoth, J. T. (2001). FATCOP 2.0: Advanced Features in an Opportunistic Mixed Integer PRogramming solver. Annals of Operations Research, 103, 17–32.

    Article  Google Scholar 

  • Conejo, A. J., Castillo, E., Mínguez, R., & García-Bertrand, R. (2006). Decomposition techniques in mathematical programming. Engineering and science applications. Berlin: Springer.

    Google Scholar 

  • Dempster, M. A. H., & Thompson, R. T. (1998). Parallelization and aggregation of nested Benders decomposition. Annals of Operations Research, 81, 163–188.

    Article  Google Scholar 

  • Dye, S. (2003). Subtree decomposition for multistage stochastic programs. In 18th international symposium on mathematical programming, Humboldt University Berlin, Germany, 2003.

  • Entriken, R. (1996). Parallel decomposition: Results for staircase linear programs. SIAM Journal on Optimization, 6(4), 961–977.

    Article  Google Scholar 

  • Foster, I., & Kesselman, C. (1997). Globus: a metacomputing infrastructure toolkit. International Journal of Supercomputer Applications, 11, 115–128.

    Google Scholar 

  • Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE Transactions on Computers, C-21(9), 948–960.

    Article  Google Scholar 

  • Goux, J.-P., & Leyffer, S. (2002). Solving large MINLPs on computational grids. Optimization and Engineering, 3, 327–354.

    Article  Google Scholar 

  • Iamnitchi, A., & Foster, I. T. (2000). A problem-specific fault-tolerance mechanism for asynchronous, distributed systems. In International conference on parallel processing (pp. 4–14), 2000.

  • Johnson, E. E. (1988). Completing an MIMD multiprocessor taxonomy. Computer Architecture News, 16, 44–47.

    Article  Google Scholar 

  • Karypis, G., Gupta, A., & Kumar, V. (1994).A parallel formulation of interior point algorithms (Technical Report 94-20). Computer Science Department, University of Minnesota, Minneapolis.

  • Linderoth, J., & Wright, S. J. (2003). Decomposition algorithms for stochastic programming on a computational grid. Computational Optimization and Applications, 24, 207–250. Special Issue on Stochastic Programming.

    Article  Google Scholar 

  • Luther, A., Buyya, R., Ranjan, R., & Venugopal, S. (2005). Peer-to-peer grid computing and a .NET-based Alchemi framework. In High performance computing: paradigm and infrastructure. New York: Wiley.

  • Mulvey, J. M., & Ruszczyński, A. (1995). A new scenario decomposition method for large-scale stochastic optimization. Operations Research 43(3), 477–490.

    Article  Google Scholar 

  • Murphy, L., Contreras, J., & Wu, F. F. (1995). A decomposition-coordination approach for large-scale optimization. In Proceedings SIAM conference on parallel processing for scientific computing (pp. 78–83), 1995.

  • Nielsen, S. S., & Zenios, S. A. (1997). Scalable parallel benders decomposition for stochastic linear programming. Parallel Computing, 23(8), 1069–1088.

    Article  Google Scholar 

  • Nogales, F. J., Prieto, F. J., & Conejo, A. J. (2003). A decomposition methodology applied to the multi-area optimal power flow problem. Annals of Operations Research, 120, 99–116.

    Article  Google Scholar 

  • Rockafellar, R. T., & Wets, R. J.-B. (1991). Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research, 16, 119–147.

    Article  Google Scholar 

  • Rosa, C., & Ruszczyński, A. (1994). On augmented Lagrangian decomposition methods for multistage stochastic program (Tech. Report WP-94-125). International Institute for Applied Systems Analysis.

  • Seymour, K., YarKhan, A., Agrawal, S., & Dongarra, J. (2005). NetSolve: grid enabling scientific computing environments. In Grid computing and new frontiers of high performance processing. Amsterdam: Elsevier.

  • Shamir, R. (1987). The efficiency of the simplex method: a survey. Management Science, 33(3), 301–334.

    Article  Google Scholar 

  • Shu, W., & Wu, M.-Y. (1993). Sparse implementation of revised simplex algorithms on parallel computers. In The sixth SIAM conference on parallel processing for scientific computing (pp. 501–509), 1993.

  • SIPLIB (2004). A stochastic integer programming test problem library. http://www2.isye.gatech.edu/~sahmed/siplib/.

  • Stone, H. S., Chen, T. C., Flynn, M. J., Fuller, S. H., Lane, W. G., Loomis, Jr., H. H., McKeeman, W. M., Magleby, K. B., Matick, R. E., Sites, R., & Whitney, T. M. (1975). Introduction to computer architecture. Chicago: Science Research Associates.

    Google Scholar 

  • Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed computing in practice: the Condor experience. Concurrency—Practice and Experience, 17, 323–356.

    Article  Google Scholar 

  • Trienekens, H. W. J. M., & de Bruin, A. (1992). Toward a taxonomy of parallel branch and bound algorithms (Report EUR-CS-92-01). Erasmus University Rotterdam, Rotterdam.

  • Van Slyke, R. M., & Wets, R. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics, 17, 638–663.

    Article  Google Scholar 

  • Wright, S. J. (2001). Solving optimization problems on computational grids. Optima, 65, 8–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús M. Latorre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latorre, J.M., Cerisola, S., Ramos, A. et al. Analysis of stochastic problem decomposition algorithms in computational grids. Ann Oper Res 166, 355–373 (2009). https://doi.org/10.1007/s10479-008-0476-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0476-1

Keywords

Navigation