Skip to main content

Sticks and carrots for the design of international climate agreements with renegotiations

Abstract

This paper examines renegotiations of international climate agreements for carbon abatement. We explore coalition stability under ‘optimal transfers’ that have been suggested to stabilise international environmental agreements (e.g. McGinty in Oxford Economic Papers 59, 45–62, 2007). Such transfer schemes need to be refined when agreements are renegotiated. We determine the requirements that transfers between signatories of an international climate agreement must satisfy in order to stabilise the sequence of agreements that performs best in terms of provision of the public good ‘carbon abatement’. If these requirements are met, no country wants to change its membership status at any stage. In order to demonstrate the applicability of our result we use the STACO model, a 12-regions global model, to assess the impact of well-designed transfer rules on the stability of an international climate agreement. Although there are strong free-rider incentives, we find a stable grand coalition in the first commitment period in a game with one round of renegotiations if renegotations take place sufficiently early.

References

  1. Altamirano-Cabrera, J.-C., & Finus, M. (2006). Permit trading and stability of international climate agreements. Journal of Applied Economics, 9, 19–47.

    Google Scholar 

  2. Asheim, G. B., & Holtsmark, B. (2009). Renegotiation-proof climate agreements with full participation: Conditions for Pareto efficiency. Environmental and Resource Economics, 43, 519–533.

    Article  Google Scholar 

  3. Asheim, G. B., Bretteville Froyn, C., Hovi, J., & Menz, F. C. (2006). Regional versus global cooperation for climate control. Journal of Environmental Economics and Management, 51, 93–109.

    Article  Google Scholar 

  4. Babiker, M. H., Reilly, J. M., Mayer, M., Eckaus, R. S., Wing, I. S., & Hyman, R. C. (2001). The MIT emissions prediction and policy analysis (EPPA) model: revisions, sensitivities and comparison of results. MIT joint program on the science and policy of global change. Report No. 71, Cambridge.

  5. Barrett, S. (1994). Self-enforcing international environmental agreements. Oxford Economic Papers, 46, 878–894.

    Google Scholar 

  6. Barrett, S. (1999). A theory of full international cooperation. Journal of Theoretical Politics, 11(4), 519–541.

    Article  Google Scholar 

  7. Barrett, S. (2005). Environment and statecraft—the strategy of environmental treaty-making. Oxford: Oxford University Press.

    Google Scholar 

  8. Benoît, J.-P., & Krishna, V. (1993). Renegotiation in finitely repeated games. Econometrica, 61, 303–323.

    Article  Google Scholar 

  9. Bernheim, B. D., Peleg, B., & Whinston, M. D. (1987). Coalition-proof Nash equilibria I. Concepts. Journal of Economic Theory, 42, 1–12.

    Article  Google Scholar 

  10. Bosello, F., Buchner, B., & Carraro, C. (2003). Equity, development and climate change control. Journal of the European Economic Association, 1(2–3), 600–611.

    Google Scholar 

  11. Botteon, M., & Carraro, C. (1997). Burden-sharing and coalition stability in environmental negotiations with asymmetric countries. In C. Carraro (Ed.), Environmental policy, international agreements and international trade (pp. 26–55). Cheltenham: Edward Elgar.

    Google Scholar 

  12. Carraro, C., & Siniscalco, D. (1993). Strategies for international protection of the environment. Journal of Public Economics, 52, 309–328.

    Article  Google Scholar 

  13. Carraro, C., Eyckmans, J., & Finus, M. (2006). Optimal transfers and participation decisions in international environmental agreements. Review of International Organizations, 1, 379–396.

    Article  Google Scholar 

  14. Chander, P., & Tulkens, H. (1995). A core-theoretic solution for the design of cooperative agreements on transfrontier pollution. International Tax and Public Finance, 2, 279–293.

    Article  Google Scholar 

  15. Dasgupta, P. (1982). The control of resources. Oxford: Blackwell.

    Google Scholar 

  16. d’Aspremont, C., Jaquemin, A., Gabszewicz, J. J., & Weymark, J. A. (1983). On the stability of collusive price leadership. Canadian Journal of Economics, 16(1), 17–25.

    Article  Google Scholar 

  17. Dellink, R., Nagashima, M., Van Ierland, E., Hendrix, E., Saiz, E., & Weikard, H.-P. (2009). STACO technical document 2: Model description and calibration of STACO-2.1. www.enr.wur.nl/uk/staco. Wageningen: Wageningen University.

  18. De Zeeuw, A. (2008). Dynamic effects on the stability of international environmental agreements. Journal of Environmental Economics and Management, 55, 163–174.

    Article  Google Scholar 

  19. Ellerman, A. D., & Decaux, A. (1998). Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves (MIT Report #40). Cambridge: MIT.

  20. Eyckmans, J. (1999). Strategy proof uniform effort sharing schemes for transfrontier pollution problems. Environmental and Resource Economics, 14(2), 165–189.

    Article  Google Scholar 

  21. Fankhauser, S. (1995). Valuing climate change: The economics of the greenhouse. London: Earthscan.

    Google Scholar 

  22. Finus, M., & Rundshagen, B. (2003). Endogenous coalition formation in global pollution control: a partition function approach. In C. Carraro (Ed.), The endogenous formation of economic coalitions (pp. 199–243). Cheltenham: Edward Elgar.

    Google Scholar 

  23. Finus, M., Van Ierland, E., & Dellink, R. (2006). Stability of climate coalitions in a cartel formation game. Economics of Governance, 7, 271–291.

    Article  Google Scholar 

  24. Fuentes-Albero, C., & Rubio, S. J. (2010). Can the international environmental cooperation be bought? European Journal of Operational Research, 202(1), 255–264.

    Article  Google Scholar 

  25. Hoel, M. (1992). International environmental conventions: the case of uniform reductions of emissions. Environmental and Resource Economics, 2, 141–159.

    Google Scholar 

  26. McEvoy, D. M., & Stranlund, J. K. (2009). Self-enforcing international environmental agreements with costly monitoring for compliance. Environmental and Resource Economics, 42, 491–508.

    Article  Google Scholar 

  27. McGinty, M. (2007). International environmental agreements among asymmetric nations. Oxford Economic Papers, 59, 45–62.

    Article  Google Scholar 

  28. Nagashima, M., Dellink, R., van Ierland, E. C., & Weikard, H.-P. (2009). Stability of international climate coalitions—A comparison of transfer schemes. Ecological Economics, 68, 1476–1487.

    Article  Google Scholar 

  29. Nordhaus, W. D. (1994). Managing the global commons: The economics of climate change. Cambridge: MIT Press.

    Google Scholar 

  30. Nordhaus, W. D., & Boyer, J. (2001). Warming the world: Economic models of global warming. Cambridge: MIT Press.

    Google Scholar 

  31. Paltsev, S., Reilly, J. M., Jacoby, H. D., Eckaus, R. S., McFarland, J., Sarofim, M., Asadoorian, M., & Babiker, M. (2005). The MIT emissions prediction and policy analysis (EPPA) model: version 4. MIT joint program on the science and policy of global change. Report 125. Cambridge: MIT.

  32. Rose, A., Stevens, B., Edmonds, J., & Wise, M. (1998). International equity and differentiation in global warming policy. An application to tradeable emissions permits. Environmental and Resource Economics, 12, 25–51.

    Article  Google Scholar 

  33. Rubio, S. J., & Ulph, A. (2007). An infinite horizon model of dynamic membership of international environmental agreements. Journal of Environmental Economics and Management, 54, 296–310.

    Article  Google Scholar 

  34. Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodels mit Nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft, 121, 301–324 & 667–689.

    Google Scholar 

  35. Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 4, 25–55.

    Article  Google Scholar 

  36. Tol, R. S. J. (1997). A decision-analytic treatise of the enhanced greenhouse effect. PhD-thesis, Amsterdam: Vrije Universiteit.

  37. Ulph, A. (2004). Stable international environmental agreements with a stock pollutant, uncertainty and learning. Journal of Risk and Uncertainty, 29(1), 53–73.

    Article  Google Scholar 

  38. Weikard, H.-P. (2009). Cartel stability under an optimal sharing rule. The Manchester School, 77(5), 599–616.

    Article  Google Scholar 

  39. Weikard, H.-P., Finus, M., & Altamirano-Cabrera, J. C. (2006). The impact of surplus sharing on the stability of international climate agreements. Oxford Economic Papers, 58, 209–232.

    Article  Google Scholar 

  40. Weikard, H.-P., Dellink, R., & Van Ierland, E. (2010). Renegotiations in the greenhouse. Environmental and Resource Economics, 45, 573–596.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Weikard.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Weikard, HP., Dellink, R. Sticks and carrots for the design of international climate agreements with renegotiations. Ann Oper Res 220, 49–68 (2014). https://doi.org/10.1007/s10479-010-0795-x

Download citation

Keywords

  • Stability of coalitions
  • International environmental agreements
  • Partition function approach
  • Sharing rules
  • Renegotiations
  • Climate agreements