Skip to main content
Log in

Reciprocity formulas for Hall–Wilson–Zagier type Hardy–Berndt sums

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We introduce vast generalizations of the Hardy–Berndt sums. They involve higher-order Euler and/or Bernoulli functions, in which the variables are affected by certain linear shifts. By employing the Fourier series technique we derive linear relations for these sums. In particular, these relations yield reciprocity formulas for Carlitz, Rademacher, Mikolás and Apostol type generalizations of the Hardy–Berndt sums, and give rise to generalizations for some Goldberg’s three-term relations. We also present an elementary proof for the Mikolás’ linear relation and a reciprocity formula in terms of the generation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards (New York, 1965).

  2. Alkan, E., Xiong, M., Zaharescu, A.: A bias phenomenon on the behavior of Dedekind sums. Math. Res. Letters 15, 1039–1052, 2008

    MathSciNet  MATH  Google Scholar 

  3. Apostol, T.M.: Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17, 147–157, 1950

    MathSciNet  MATH  Google Scholar 

  4. Apostol, T.M.: Theorems on generalized Dedekind sums. Pacific J. Math. 2, 1–9, 1952

    MathSciNet  MATH  Google Scholar 

  5. Beck, M., Chavez, A.: Bernoulli-Dedekind sums. Acta Arith. 149, 65–82, 2011

    MathSciNet  MATH  Google Scholar 

  6. Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergrad. Texts Math, Springer (New York 2007

    MATH  Google Scholar 

  7. Berndt, B.C.: Reciprocity theorems for Dedekind sums and generalizations. Adv. in Math. 23, 285–316, 1977

    MathSciNet  MATH  Google Scholar 

  8. Berndt, B.C.: Analytic Eisenstein series, theta functions and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303(304), 332–365, 1978

    MathSciNet  MATH  Google Scholar 

  9. Berndt, B.C., Goldberg, L.A.: Analytic properties of arithmetic sums arising in the theory of the classical theta functions. Siam J. Math. Anal. 15, 143–150, 1984

    MathSciNet  MATH  Google Scholar 

  10. Bettin, S.: A generalization of Rademacher's reciprocity law. Acta Arith. 159, 363–374, 2013

    MathSciNet  MATH  Google Scholar 

  11. Bettin, S., Conrey, J.: A reciprocity formula for a cotangent sum. Int. Math. Res. Not. 24, 5709–5726, 2013

    MathSciNet  MATH  Google Scholar 

  12. Bettin, S., Conrey, J.: Period functions and cotangent sums. Algebra Number Theory 7, 215–242, 2013

    MathSciNet  MATH  Google Scholar 

  13. Boztaş, M.Ç., Can, M.: Transformation formulas of a character analogue of \(\log \theta _{2}(z) \). Ramanujan J. 48, 323–349, 2019

    MathSciNet  MATH  Google Scholar 

  14. Can, M.: Some arithmetic on the Hardy sums \(s_{2}(h, k) \) and \(s_{3}( h, k) \). Acta Math. Sin. Engl. Ser. 20, 193–200, 2004

    MathSciNet  MATH  Google Scholar 

  15. Can, M., Cenkci, M., Kurt, V.: Generalized Hardy-Berndt sums. Proc. Jangjeon Math. Soc. 9, 19–38, 2006

    MathSciNet  MATH  Google Scholar 

  16. Can, M., Dağlı, M.C.: Character analogue of the Boole summation formula with applications. Turk. J. Math. 41, 1204–1223, 2017

    MathSciNet  MATH  Google Scholar 

  17. Can, M., Kurt, V.: Character analogues of certain Hardy-Berndt sums. Int. J. Number Theory 10, 737–762, 2014

    MathSciNet  MATH  Google Scholar 

  18. Carlitz, L.: Some theorems on generalized Dedekind sums. Pacific J. Math. 3, 513–522, 1953

    MathSciNet  MATH  Google Scholar 

  19. Carlitz, L.: Generalized Dedekind sums. Math. Z. 85, 83–90, 1964

    MathSciNet  MATH  Google Scholar 

  20. Cenkci, M.: On \(p\)-adic character Dedekind sums. Palestine J. Math. 4, 502–507, 2015

    MathSciNet  MATH  Google Scholar 

  21. Cenkci, M., Can, M., Kurt, V.: Degenerate and character Dedekind sums. J. Number Theory 124, 346–363, 2007

    MathSciNet  MATH  Google Scholar 

  22. M. C. Dağlı and M. Can, A new generalization of Hardy–Berndt sums, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), 177–192.

  23. Goldberg, L.A.: Transformations of theta-functions and analogues of Dedekind sums. University of Illinois (Urbana, Thesis 1981

    Google Scholar 

  24. Hall, R.R., Wilson, J.C.: On reciprocity formulae for inhomogeneous and homogeneous Dedekind sums. Math. Proc. Cambridge Philos. Soc. 114, 9–24, 1993

    MathSciNet  MATH  Google Scholar 

  25. Hall, R.R., Wilson, J.C., Zagier, D.: Reciprocity formulae for general Dedekind-Rademacher sums, Acta Arith. LXXII I, 389–396, 1995

    MATH  Google Scholar 

  26. Hickerson, D.: Continued fractions and density results for Dedekind sums. J. Reine Angew. Math. 290, 113–116, 1977

    MathSciNet  MATH  Google Scholar 

  27. Hirzebruch, F., Zagier, D.: The Atiyah-Singer Theorem and Elementary Number Theory, Publish or Perish, Inc., Boston MA 1974

  28. Knuth, D.E.: The Art of Computer Programming, 2nd edn. MA, Addison-Wesley (Reading 1981

    MATH  Google Scholar 

  29. K. Kovalenko and N. Derevyanko, On a category of cotangent sums related to the Nyman–Beurling criterion for the Riemann hypothesis, arxiv.org/abs/1811.04399 (2018)

  30. Liu, H., Zhang, W.: On the even power mean of a sum analogous to Dedekind sums. Acta Math. Hungar. 106, 67–81, 2005

    MathSciNet  MATH  Google Scholar 

  31. Liu, H., Zhang, W.: Generalized Cochrane sums and Cochrane-Hardy sums. J. Number Theory 122, 415–428, 2007

    MathSciNet  MATH  Google Scholar 

  32. Liu, H., Gao, J.: Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums. Czech. Math. J. 62, 1147–1159, 2012

    MathSciNet  MATH  Google Scholar 

  33. Maier, H., Rassias, M.T.: Generalizations of a cotangent sum associated to the Estermann zeta function. Commun. Contemp. Math. 18, 1550078, 2016

    MathSciNet  MATH  Google Scholar 

  34. Meyer, J.L.: Properties of certain integer-valued analogues of Dedekind sums, Acta Arith. LXXXI I, 229–242, 1997

    MATH  Google Scholar 

  35. Meyer, J.L.: Character analogues of Dedekind sums and transformations of analytic Eisenstein series. Pacific J. Math. 194, 137–164, 2000

    MathSciNet  MATH  Google Scholar 

  36. Mikolás, M.: On certain sums generating the Dedekind sums and their reciprocity laws. Pacific J. Math. 7, 1167–1178, 1957

    MathSciNet  MATH  Google Scholar 

  37. L. J. Mordell, Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. Soc. (N.S.), 15 (1951), 41–46.

  38. Peng, W., Zhang, T.: Some identities involving certain Hardy sum and Kloosterman sum. J. Number Theory 165, 355–362, 2016

    MathSciNet  MATH  Google Scholar 

  39. Pettet, M.R., Sitaramachandrarao, R.: Three-term relations for Hardy sums. J. Number Theory 25, 328–339, 1987

    MathSciNet  MATH  Google Scholar 

  40. Pommersheim, J.E.: Toric varieties, lattice points and Dedekind sums. Math. Ann. 295, 1–24, 1993

    MathSciNet  MATH  Google Scholar 

  41. Rassias, M.T.: On a cotangent sum related to zeros of the Estermann zeta function. Appl. Math. Comput. 240, 161–167, 2014

    MathSciNet  MATH  Google Scholar 

  42. Rademacher, H.: Zur theorie der Dedekindschen summen. Math. Z. 63, 445–463, 1956

    MathSciNet  MATH  Google Scholar 

  43. Rademacher, H.: Some remarks on certain generalized Dedekind sums. Acta Arith. 9, 97–105, 1964

    MathSciNet  MATH  Google Scholar 

  44. Rosen, K.H., Snyder, W.M.: \(p\)-adic Dedekind sums. J. Reine Angew. Math. 361, 23–26, 1985

    MathSciNet  MATH  Google Scholar 

  45. Simsek, Y.: Theorems on three term relations for Hardy sums. Turk. J. Math. 22, 153–162, 1998

    MathSciNet  MATH  Google Scholar 

  46. Simsek, Y.: Relations between theta functions, Hardy sums, Eisenstein and Lambert series in the transformation formulae of \(\log \eta _{g, h}(z)\). J. Number Theory 99, 338–360, 2003

    MathSciNet  MATH  Google Scholar 

  47. Simsek, Y.: \(p\)-adic \(q\)-higher-order Hardy-type sums. J. Korean Math. Soc. 43, 111–131, 2006

    MathSciNet  MATH  Google Scholar 

  48. Simsek, Y.: \(q\)-Hardy-Berndt type sums associated with \(q\)-Genocchi type zeta and \(q\)-\(l\)-functions. Nonlinear Anal. 71, 377–395, 2009

    MathSciNet  MATH  Google Scholar 

  49. Sitaramachandrarao, R.: Dedekind and Hardy sums, Acta Arith. XLII I, 325–340, 1987

    MATH  Google Scholar 

  50. Takács, L.: On generalized Dedekind sums. J. Number Theory 11, 264–272, 1979

    MathSciNet  MATH  Google Scholar 

  51. Urzúa, G.: Arrangements of curves and algebraic surfaces. J. Algebraic Geom. 19, 335–365, 2010

    MathSciNet  MATH  Google Scholar 

  52. Zagier, D.: Higher dimensional Dedekind sums. Math. Ann. 202, 149–172, 1973

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Can.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, M. Reciprocity formulas for Hall–Wilson–Zagier type Hardy–Berndt sums. Acta Math. Hungar. 163, 118–139 (2021). https://doi.org/10.1007/s10474-020-01101-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01101-x

Key words and phrases

Mathematics Subject Classification

Navigation