Skip to main content
Log in

On a certain arithmetical determinant

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Smith showed in 1875 that if \({n \geqq 1}\) is an integer and \({G := {({\rm gcd}(i, j))}_{1 \leqq i, j \leqq n}}\) is the \({n \times n}\) matrix having gcd(i, j) as its i, j-entry for all integers i and j between 1 and n, then \({{\rm det}(G) = {\prod_{k=1}^{n}}\varphi(k)}\), where \({\varphi}\) is the Euler’s totient function. We show that if \({n \geqq 2}\) is an integer and \({H := {({\rm gcd}(i, j))}_{2 \leqq i, j \leqq n}}\) is the \({(n-1) \times (n-1)}\) matrix having gcd(i, j) as its i, j-entry for all integers i and j between 2 and n, then

$${\rm det}(H) = (\prod \limits_{k=1}^{n} \varphi(k)) \sum \limits_{\begin{array}{c} k=1 \\ k {\rm is squarefree} \\ \end{array}}^{n} \frac{1}{\varphi(k)}.$$

We also calculate the determinants of the matrices \({{(f({\rm gcd}(x_{i}, x_{j})))}_{1 \leqq i, j \leqq n}}\) and \({{(f({\rm lcm}(x_{i},x_{j})))}_{1\leqq i, j\leqq n}}\) having f evaluated at \({{\rm gcd}(x_{i}, x_{j})}\) and \({{\rm lcm}(x_{i}, x_{j})}\) as their (i, j)-entries, respectively, where \({S = \{x_{1},\ldots, x_{n}\}}\) is a set of distinct positive integers such that \({x_{i} > 1}\) for all integers i with \({1 \leqq i \leqq n}\) and \({S \cup \{1\}}\) is factor closed (that is, \({S \cup \{1\}}\) contains every divisor of x for any \({x \in S \cup\{1\}}\)). Our result answers partially an open problem raised by Ligh [18].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol T.M.: Arithmetical properties of generalized Ramanujan sums. Pacific J. Math. 41, 281–293 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balatoni F.: On the eigenvalues of the matrix of the Smith determinant. Mat. Lapok 20, 397–403 (1969) (in Hungarian)

    MathSciNet  MATH  Google Scholar 

  3. Bege A.: Generalized LCM matrices. Publ. Math. Debrecen 79, 309–315 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhatia R.: Infinitely divisible matrices. Amer. Math. Monthly 113, 221–235 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beslin S., Ligh S.: Another generalization of Smith’s determinant. Bull. Aust. Math. Soc. 40, 413–415 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourque K., Ligh S.: Matrices associated with classes of arithmetical functions. J. Number Theory 45, 367–376 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourque K., Ligh S.: Matrices associated with classes of multiplicative functions. Linear Algebra Appl. 216, 267–275 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Codecá P., Nair M.: Calculating a determinant associated with multiplicative functions. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 5, 545–555 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Haukkanen P., Mattila M., Mäntysalo J.: Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions. J. Combin. Theory Ser. A 135, 181–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hilberdink T.: Determinants of multiplicative Toeplitz matrices. Acta Arith. 125, 265–284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hong S. A., Hu S. N., Hong S. F.: Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions. Open Math. 14, 146–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong S. F.: Gcd-closed sets and determinants of matrices associated with arithmetical functions. Acta Arith. 101, 321–332 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong S. F., Enoch Lee K. S.: Asymptotic behavior of eigenvalues of reciprocal power LCM matrices. Glasgow Math. J. 50, 163–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hong S. F., Loewy R.: Asymptotic behavior of eigenvalues of greatest common divisor matrices. Glasgow Math. J. 46, 551–569 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong S. F., Loewy R.: Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions (mod r). Int. J. Number Theory 7, 1681–1704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hong S. F., Li M., Wang B. Y.: Hyperdeterminants associated with multiple even functions. Ramanujan J. 34, 265–281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korkee I., Haukkanen P.: On a general form of join matrices associated with incidence functions. Aequationes Math. 75, 29–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ligh S.: Generalized Smith’s determinant. Linear Multilinear Algebra 22, 305–306 (1988)

    Article  Google Scholar 

  19. McCarthy P. J.: A generalization of Smith’s determinant. Canad. Math. Bull. 29, 109–113 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, fourth edition, John Wiley and Sons (New York, 1980).

  21. H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc., 7 (1875–1876), 208–212.

  22. Weber M. J. G.: On convergence almost everywhere of series of dilated functions. C.R. Math. Acad. Sci. Paris 353, 883–886 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weber M. J. G.: An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann zeta function. J. Number Theory 162, 137–179 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wintner A.: Diophantine approximations and Hilbert’s space. Amer. J. Math. 66, 564–578 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yamasaki Y.: Arithmetical properties of multiple Ramanujan sums. Ramanujan J. 21, 241–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Hu, S. & Lin, Z. On a certain arithmetical determinant. Acta Math. Hungar. 150, 372–382 (2016). https://doi.org/10.1007/s10474-016-0664-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-016-0664-4

Keywords and phrases

Mathematics Subject Classification

Navigation