Skip to main content
Log in

Almost contact metric manifolds whose Reeb vector field is a harmonic section

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We investigate almost contact metric manifolds whose Reeb vector field is a harmonic unit vector field, equivalently a harmonic section. We first consider an arbitrary Riemannian manifold and characterize the harmonicity of a unit vector field ξ, when ∇ξ is symmetric, in terms of Ricci curvature. Then, we show that for the class of locally conformal almost cosymplectic manifolds whose Reeb vector field ξ is geodesic, ξ is a harmonic section if and only if it is an eigenvector of the Ricci operator. Moreover, we build a large class of locally conformal almost cosymplectic manifolds whose Reeb vector field is a harmonic section. Finally, we exhibit several classes of almost contact metric manifolds where the associated almost contact metric structures σ are harmonic sections, in the sense of Vergara-Diaz and Wood [25], and in some cases they are also harmonic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. K. Abbassi, G. Calvaruso and D. Perrone, Harmonicity of unit vector fields with respect to Riemannian g-natural metrics, Differential Geom. Appl., 27 (2009), 157–169.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189–214.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhäuser (Boston, Basel, Berlin, 2002).

    MATH  Google Scholar 

  4. S. H. Chun, J. H. Park and K. Sekigawa, H-contact unit tangent sphere bundles of Einstein manifolds, Quart. J. Math., 62 (2011), 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Dacko and Z. Olszak, On almost cosymplectic (κ,μ,ν)-spaces, Banach Center Publ., 69 (2005), 211–220.

    Article  MathSciNet  Google Scholar 

  6. P. Dacko and Z. Olszak, On almost cosymplectic (−1,μ,0)-spaces, Central European J. Math., 3 (2005), 318–330.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geometry, 93 (2009), 46–61.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds with a condition of η-parallelism, Differential Geometry and its Applications, 27 (2009), 671–679.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Dragomir and D. Perrone, Harmonic Vector Fields: Variational Principles and Differential Geometry, Elsevier Science Ltd. (2011).

    Google Scholar 

  10. S. Dragomir and G. Tomassini, Differential Geometry and Analysis in CR Manifolds, Progress in Math. 246, Birkhäuser (Boston–Basel–Berlin, 2006).

    Google Scholar 

  11. S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math., 31 (1969), 373–381.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. D. Han and J. W. Yim, Unit vector fields on spheres which are harmonic maps, Math. Z., 227 (1998), 83–92.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull., 43 (2000), 440–447.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. in Math., 21 (1976), 293–329.

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Olszak, Normal almost contact metric manifolds of dimension three, Annales Polonici Mathematici, XLVII (1986), 41–50.

    MathSciNet  Google Scholar 

  17. S. Olszak, On almost cosymplectic manifolds, Kodai Math. J., 4 (1981), 239–250.

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Olszak, Locally conformal cosymplectic manifolds, Colloq. Math., 57 (1989), 73–87.

    MathSciNet  MATH  Google Scholar 

  19. D. Perrone, Harmonic characteristic vector fields on contact metric manifolds, Bull. Austral. Math Soc., 67 (2003), 305–315.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Perrone, Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differential Geom. Appl., 20 (2004), 367–378.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Perrone, Geometry of contact Riemannian manifolds whose Reeb vector field is harmonic, in: Lect. Notes Sem. Interdiscip. Mat., S.I.M., Dip. Mat. IV, Univ. Basilicata (Potenza, 2005), pp. 153–167.

    Google Scholar 

  22. D. Perrone, Minimality, harmonicity and CR geometry for Reeb vector fields, Internat. J. Math., 21 (2010), 1189–1218.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl., 30 (2012), 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314 (1988), 349–379.

    Article  MathSciNet  Google Scholar 

  25. E. Vergara-Diaz and C. M. Wood, Harmonic almost contact structures, Geom. Dedicata, 123 (2006), 131–151.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Vergara-Diaz and C. M. Wood, Harmonic almost contact structures, and submersions, Internat. J. Math., 2 (2009), 209–225.

    Article  MathSciNet  Google Scholar 

  27. I. Vaisman, Conformal Chance of Almost Contact Manifolds, Lect. Notes in Math. 792, Springer (Berlin–Heidelberg–New York, 1980), pp. 435–443.

    Google Scholar 

  28. G. Wiegmink, Total bending of vector fields on Riemannian manifolds, Math. Ann., 303 (1995), 325–344.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. M. Wood, On the energy of a unit vector field, Geom. Dedicata, 64 (1997), 319–330.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Perrone.

Additional information

Supported by funds of the University of Salento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrone, D. Almost contact metric manifolds whose Reeb vector field is a harmonic section. Acta Math Hung 138, 102–126 (2013). https://doi.org/10.1007/s10474-012-0228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-012-0228-1

Key words and phrases

Mathematics Subject Classification

Navigation