Skip to main content
Log in

Deformation of \(\mathfrak{sl}\, (2)\) and \(\mathfrak{osp}\, (1|2)\)-modules of symbols

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We consider the \(\mathfrak{sl}\, (2)\)-module structure on the spaces of symbols of differential operators acting on the spaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this structure and prove that any formal deformation is equivalent to its infinitesimal part. We study also the super analogue of this problem getting the same results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Agrebaoui, F. Ammar, P. Lecomte and V. Ovsienko, Multi-parameter deformations of the module of symbols of differential operators, Internat. Mathem. Research Notices, 16 (2002), 847–869.

    Article  MathSciNet  Google Scholar 

  2. B. Agrebaoui, N. Ben Fraj, M. Ben Ammar and V. Ovsienko, Deformation of modules of differential forms, Nonlinear Math. Physics, 10 (2003), 148–156.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Basdouri and M. Ben Ammar, Cohomology of \(\mathop {\mathfrak {osp}}\nolimits \, (1|2)\) acting on linear differential operators on the supercercle S 1|1, Letters in Mathematical Physics, 81 (2007), 239–251.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelbene and K. Kammoun, Cohomology of the Lie superalgebra of contact vector fields on ℝ1|1 and deformations of the superspace of symbols, J. Nonlinear Math. Physics, 16 (2009), 1–37.

    Google Scholar 

  5. I. Basdouri, M. Ben Ammar, B. Dali and S. Omri, Deformation of \(\mathop {\mathfrak {vect}}\nolimits \, (1)\) -Modules of Symbols, doi:10.1016/j.geomphys.2009.12.002.

  6. M. Ben Ammar and M. Boujelbene, \(\mathop {\mathfrak {sl}}\nolimits \, (2)\)-trivial deformation of \(\mathrm{Vect_{Pol}}(\mathbb{R})\)-modules of symbols, SIGMA, 4 (2008), 065. 19 pages

    MathSciNet  Google Scholar 

  7. F. Berezin, Introduction to Superanalysis, Mathematical Physics and Applied Mathematics 9, Reidel (Dordrecht, 1987).

    MATH  Google Scholar 

  8. B. L. Feigin and D. B. Fuchs, Homology of the Lie algebras of vector fields on the line, Func. Anal. Appl., 14 (1980), 201–212.

    Article  Google Scholar 

  9. A. Fialowski, Deformations of Lie algebras, Mat. Sbornik, USSR, 127(169) (1985), 476–482; English translation, Math. USSR-Sb., 55 (1986), 467–473.

    MathSciNet  Google Scholar 

  10. A. Fialowski, An example of formal deformations of Lie algebras, in: Proceedings of the NATO Conference on Deformation Theory of Algebras and Applications (Il Ciocco, Italy, 1986), Kluwer (Dordrecht, 1988), pp. 375–401.

    Chapter  Google Scholar 

  11. H. Gargoubi, N. Mellouli and V. Ovsienko, Differential operators on supercircle: Conformally equivariant quantization and symbol calculus, Letters in Mathematical Physics, 79 (2007), 51–65.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. B. A. Lecomte, On the cohomology of \(\mathop {\mathfrak {sl}}\nolimits \, (n + 1;\mathbb{R})\) acting on differential operators and \(\mathop {\mathfrak {sl}}\nolimits \, (n + 1;\mathbb{R})\)-equivariant symbols, Indag. Math. NS., 11 (2000), 95–114.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Leites, Supermanifold Theory, USSR Academy of Science Petrozavodsk (1983) (in Russian).

    Google Scholar 

  14. A. Nijenuis and R. W. Richardson Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc., 73 (1967), 175–179.

    Article  MathSciNet  Google Scholar 

  15. V. Ovsienko and C. Roger, Deforming the Lie algebra of vector fields on S 1 inside the Lie algebra of pseudodifferential operators on S 1, AMS Transl. Ser. 2, (Adv. Math. Sci.), 194 (1999), 211–227.

    MathSciNet  Google Scholar 

  16. V. Ovsienko and C. Roger, Deforming the Lie algebra of vector fields on S 1 inside the Poisson algebra on \(\dot{T}^{*}S^{1}\), Comm. Math. Phys., 198 (1998), 97–110.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. W. Richardson, Deformations of subalgebras of Lie algebras, J. Diff. Geom., 3 (1969), 289–308.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imed Basdouri.

Additional information

Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basdouri, I., Ben Ammar, M. Deformation of \(\mathfrak{sl}\, (2)\) and \(\mathfrak{osp}\, (1|2)\)-modules of symbols. Acta Math Hung 137, 214–223 (2012). https://doi.org/10.1007/s10474-012-0220-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-012-0220-9

Key words and phrases

Mathematics Subject Classification

Navigation