Skip to main content
Log in

On the existence of viscosity solutions for the parabolic differential-functional Cauchy problem

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We consider the nonlinear Cauchy problem for second order differential-functional equations of parabolic type, and present two existence theorems: in the class of bounded and in the class of unbounded viscosity solutions. These are based on differential inequalities and on the contraction method. The functional dependence in the equation is of Hale type. Our results cover equations with retarded and deviated argument, and differential-integral problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis, Viscosity Solutions and Applications, Springer-Verlag (Berlin, Heidelberg, New York, 1997).

    Google Scholar 

  2. M. G. Crandal, H. Ishii and P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67.

    Article  MathSciNet  Google Scholar 

  3. M. G. Crandal and P. L. Lions, Condittion d’unicite pour les solutions generalisées des équations de Hamilton–Jacobi du premier ordre, C.R. Acad. Sci. Paris, Sér. I Math., 292 (1981), 183–186.

    Google Scholar 

  4. M. G. Crandal and P. L. Lions, Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1–42.

    Article  MathSciNet  Google Scholar 

  5. M. G. Crandall and P. L. Lions, On the existence and uniqueness of solutions of Hamilton–Jacobi equations, Nonl. Anal. T.M. & A., 10 (1986), 353–370.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag (New York, 1993).

    MATH  Google Scholar 

  7. H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369–384.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Ishii and S. Koike, Viscosity solutions of functional differential equations, Adv. Math. Sci. Appl. Gakkotosho, Tokyo, 3 (1993/94), 191–218.

    MathSciNet  Google Scholar 

  9. J. Szarski, Sur un systèm non linéaire d’inéqualités différentialles paraboliques contenant des functionnelles, Colloq. Math., 16 (1967), 141–145.

    MATH  MathSciNet  Google Scholar 

  10. J. Szarski, Strong maximum principle for non-linear parabolic differential-functional inequalities in arbitrary domain, Ann. Polon. Math., 31 (1975), 197–203.

    MATH  MathSciNet  Google Scholar 

  11. K. Topolski, On the uniqueness of viscosity solutions for first order partial differential-functional equations, Ann. Polon. Math., 59 (1994), 65–75.

    MATH  MathSciNet  Google Scholar 

  12. K. Topolski, Parabolic differential-functional inequalities in a viscosity sense, Ann. Polon. Math., 68 (1998), 17–25.

    MATH  MathSciNet  Google Scholar 

  13. K. A. Topolski, On the existence of viscosity solutions for the differential-functional Cauchy problem, Comment. Math., 39 (1999), 207–223.

    MATH  MathSciNet  Google Scholar 

  14. K. A. Topolski, On the vanishing viscosity method for first order differential-functional IBVP, Czech. Math. J., 58 (2008), 927–947.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof A. Topolski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topolski, K.A. On the existence of viscosity solutions for the parabolic differential-functional Cauchy problem. Acta Math Hung 129, 277–296 (2010). https://doi.org/10.1007/s10474-010-0029-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-010-0029-3

Key words and phrases

2000 Mathematics Subject Classification

Navigation