Skip to main content
Log in

On weighted approximations in D[0, 1] with applications to self-normalized partial sum processes

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let X,X 1,X 2,
 be a sequence of non-degenerate i.i.d. random variables with mean zero. The best possible weighted approximations are investigated in D[0, 1] for the partial sum processes {S [nt], 0 ≩ t ≩ 1} where S n = Σ n j=1 X j , under the assumption that X belongs to the domain of attraction of the normal law. The conclusions then are used to establish similar results for the sequence of self-normalized partial sum processes {S [nt]=V n , 0 ≩ t ≩ 1}, where V 2 n = Σ n j=1 X 2 j . L p approximations of self-normalized partial sum processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Anderson and D. A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes, Ann. Math. Statist., 23 (1952), 193–212.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Breiman, Probability, Addison-Wesley (Reading, MA, 1968).

    MATH  Google Scholar 

  3. D. Chibisov, Some theorems on the limiting behaviour of empirical distribution functions, Selected Transl. Math. Statist. Probab., 6 (1964), 147–156.

    Google Scholar 

  4. G. P. Chistyakov and F. Götze, Limit distributions of Studentized means, Ann. Probab., 32 (2004), 28–77.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. CsörgƑ, A glimpse of the impact of PĂĄl ErdƑs on probability and statistics, The Canadian Journal of Statistics, 30 (2002), 493–556.

    Article  Google Scholar 

  6. M. CsörgƑ, S. CsörgƑ, L. HorvĂĄth and D. M. Mason, Weighted empirical and quantile processes, Ann. Probab., 14 (1986), 31–85.

    Article  MathSciNet  Google Scholar 

  7. M. CsörgƑ and L. HorvĂĄth, Approximations of weighted empirical and quantile processes, Statist. Probab. Lett., 4 (1986), 151–154.

    Article  MathSciNet  Google Scholar 

  8. M. CsörgƑ and L. HorvĂĄth, Nonparametric methods for changepoint problems, in: Handbook of Statistics, 7, Elsevier Science Publisher B.V., North-Holland (Amsterdam, 1988), pp. 403–425.

    Google Scholar 

  9. M. CsörgƑ and L. HorvĂĄth, Weighted Approximations in Probability and Statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley (Chichester, 1993).

    Google Scholar 

  10. M. CsörgƑ and L. HorvĂĄth, Limit Theorems in Change-Point Analysis, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley (Chichester, 1997).

    Google Scholar 

  11. M. CsörgƑ and L. HorvĂĄth and Q.-M. Shao, Convergence of integrals of uniform empirical and quantile processes, Stochastic Process. Appl., 45 (1993), 283–294.

    Article  MathSciNet  Google Scholar 

  12. M. CsörgƑ, R. NorvaiĆĄa and B. Szyszkowicz, Convergence of weighted partial sums when the limiting distribution is not necessarily Radon, Stochastic Process. Appl., 81 (1999), 81–101.

    Article  MathSciNet  Google Scholar 

  13. M. CsörgƑ and P. RĂ©vĂ©sz, Strong Approximations in Probability and Statistics, Academic Press (New York, 1981).

    Google Scholar 

  14. M. CsörgƑ, Q.-M. Shao and B. Szyszkowicz, A note on local and global functions of a Wiener process and some RĂ©nyi-type statistics, Studia Sci. Math. Hungar., 26 (1991), 239–259.

    MathSciNet  Google Scholar 

  15. M. CsörgƑ, B. Szyszkowicz and Q. Wang, Donsker’s theorem for self-normalized partial sums processes. Ann. Probab., 31 (2003), 1228–1240.

    Article  MathSciNet  Google Scholar 

  16. M. CsörgƑ, B. Szyszkowicz and Q. Wang, On weighted approximations and strong limit theorems for self-normalized partial sums processes, in: Asymptotic Methods in Stochastics, Fields Inst. Commun. 44, Amer. Math. Soc. (Providence, RI, 2004), pp. 489–521.

    Google Scholar 

  17. U. Einmahl, A generalization of Strassen’s functional LIL, J. Theor. Probab., 20 (2007), 901–915.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. GinĂ©, F. Götze and D. M. Mason, When is the Student t-statistic asymptotically standard normal? Ann. Probab., 25 (1997), 1514–1531.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. S. Griffin, Tightness of the Student t-statistic, Electron. Comm. Probab., 2 (2002), 181–190.

    MathSciNet  Google Scholar 

  20. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF, I., Z. Wahrscheinlichkeitstheorie verw. Gebiete, 32 (1975), 111–131.

    Article  MATH  Google Scholar 

  21. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. II., Z. Wahrscheinlichkeitstheorie verw. Gebiete, 34 (1976), 33–58.

    Article  MATH  Google Scholar 

  22. B. F. Logan, C. L. Mallows, S. O. Rice and L. A. Shepp, Limit distributions of self-normalized sums, Ann. Probab., 1 (1973), 788–809.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. O’Reilly, On the weak convergence of empirical processes in sup-norm metric, Ann. Probab., 2 (1974), 642–651.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Major, The approximation of partial sums of independent RV’s, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35 (1976), 213–220.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Major, Approximation of partial sums of i.i.d.r.v.’s when the summands have only two moments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35 (1976), 221–230.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Major, An improvement of Strassen’s invariance principle, Ann. Probab., 7 (1979), 55–61.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Mijnheer, A strong approximation of partial sums of i.i.d. random variables with infinite variance, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 52 (1980), 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Pyke and G. R. Shorack, Weak convergence of two-sample empirical processes and a new approach to Chernoff-Savage theorems, Ann. Math. Statist., 39 (1968), 755–771.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. RĂ©nyi, On the theory of order statistics, Acta. Math. Acad. Sci. Hungar., 4 (1953), 191–231.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. I. Sakhanenko, On unimprovable estimates of the rate of convergence in invariance principle, in: Colloquia Math. Soc. János Bolyai 32, Nonparametric Statistical Inference, North-Holland (Budapest, 1980), pp. 779–783.

    Google Scholar 

  31. A. I. Sakhanenko, On estimates of the rate of convergence in the invariance principle, in: Advances in Probability Theory: Limit Theorems and Related Problems, (A. A. Borovkov, ed.), Springer (New York, 1984), pp. 124–135.

    Google Scholar 

  32. A. I. Sakhanenko, Convergence rate in the invariance principle for non-identically distributed variables with exponential moments, in: Advances in Probability Theory: Limit Theorems for Sums of Random Variables, (A. A. Borovkov, ed.), Springer (New York, 1985), pp. 2–73.

    Google Scholar 

  33. G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley (New York, 1986).

    Google Scholar 

  34. V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3 (1964), 211–226.

    Article  MATH  MathSciNet  Google Scholar 

  35. “Student” The probable error of the mean, Biometrika, 6 (1908), 1–25.

  36. B. Szyszkowicz, Weighted stochastic processes under contiguous alternatives, C.R. Math. Rep. Acad. Sci. Canada, 13 (1991), 211–216.

    MATH  MathSciNet  Google Scholar 

  37. B. Szyszkowicz, Weighted asymptotics of partial sum processes in D[0,∞), C.R. Math. Rep. Acad. Sci. Canada, 14 (1992), 273–278.

    MATH  MathSciNet  Google Scholar 

  38. B. Szyszkowicz, L p-approximations of weighted partial sum processes, Stochastic Process. Appl., 45 (1993), 295–308.

    Article  MATH  MathSciNet  Google Scholar 

  39. B. Szyszkowicz, Weighted approximations of partial sum processes in D[0,∞). I, Studia Sci. Math. Hungar., 31 (1996), 323–353.

    MATH  MathSciNet  Google Scholar 

  40. B. Szyszkowicz, Weighted approximations of partial sum processes in D[0,∞). II, Studia Sci. Math. Hungar., 33 (1997), 305–320.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. CsörgƑ.

Additional information

Dedicated to IstvĂĄn Berkes, SĂĄndor CsörgƑ and PĂ©ter Major in celebration of their sixtieth years

The research of M. CsörgƑ and B. Szyszkowicz is supported by their NSERC Canada Discovery Grants at Carleton University, Ottawa, and Q. Wang’s research is supported in part by Australian Research Council at University of Sydney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CsörgƑ, M., Szyszkowicz, B. & Wang, Q. On weighted approximations in D[0, 1] with applications to self-normalized partial sum processes. Acta Math Hung 121, 307–332 (2008). https://doi.org/10.1007/s10474-008-7216-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-008-7216-5

Key words and phrases

2000 Mathematics Subject Classification

Navigation