Skip to main content

Weak Convergence of Self-normalized Partial Sums Processes

  • Chapter
Asymptotic Laws and Methods in Stochastics

Part of the book series: Fields Institute Communications ((FIC,volume 76))

Abstract

Let {X, X n , n ≥ 1} be a sequence of independent and identically distributed non-degenerate random variables. Put \(S_{0} = 0,\ S_{n} =\sum _{ i=1}^{n}X_{i}\) and \(V _{n}^{2} =\sum _{ i=1}^{n}X_{i}^{2},\ n \geq 1.\) A weak convergence theorem is established for the self-normalized partial sums processes \(\{S_{[int]} /V _{n},0 \leq t \leq 1\}\) when X belongs to the domain of attraction of a stable law with index α ∈ (0, 2]. The respective limiting distributions of the random variables \(\max _{1\leq i\leq n}\vert X_{i}\vert /S_{n}\) and \(\max _{1\leq i\leq n}\vert X_{i}\vert /V _{n}\) are also obtained under the same condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  2. Chistyakov, G.P., Götze, F.: Limit distributions of Studentized means. Ann. Probab. 32, 28–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Csörgő, M., Horváth, L.: Asymptotic representations of self-normalized sums. Probab. Math. Stat. 9, 15–24 (1988)

    Google Scholar 

  4. Csörgő, M., Szyszkowicz, B., Wang, Q.: Donsker’s theorem for self-normalized partial sums processes. Ann. Probab. 31, 1228–1240 (2003)

    Article  MathSciNet  Google Scholar 

  5. Csörgő, M., Szyszkowicz, B., Wang, Q.: On weighted approximations and strong— limit theorems for self-normalized partial sums processes. In: Horváth, L., Szyszkowicz, B. (eds.) Asymptotic Methods in Stochastics. Fields Institute Communications, vol. 44, pp. 489–521. American Mathematical Society, Providence (2004)

    Google Scholar 

  6. Csörgő, M., Szyszkowicz, B., Wang, Q.: On weighted approximations in D[0, 1] with application to self-normalized partial sum processes. Acta Math. Hung. 121, 307–332 (2008)

    Article  Google Scholar 

  7. Csörgő, S.: Notes on extreme and self-normalised sums from the domain of attraction of a stable law. J. Lond. Math. Soc. 39, 369–384 (1989)

    Article  Google Scholar 

  8. Darling, D.A.: The influence of the maximum term in the addition of independent random variables. Trans. Am. Math. Soc. 73, 95–107 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  9. de la Peña, V.H., Lai, T.L., Shao, Q.-M.: Self-normalized Processes: Limit Theory and Statistical Applications. Probability and Its Applications (New York). Springer, Berlin (2009)

    Google Scholar 

  10. Efron, B.: Student’s t-test under symmetry conditions. J. Am. Stat. Assoc. 64, 1278–1302 (1969)

    MATH  MathSciNet  Google Scholar 

  11. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York (1971)

    MATH  Google Scholar 

  12. Giné, E., Götze, F., Mason D.: When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25, 1514–1531 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Addison-Wesley, Cambridge (1968)

    Google Scholar 

  14. Griffin, P.S., Mason, D.M.: On the asymptotic normality of self-normalized sums. Proc. Camb. Philos. Soc. 109, 597–610 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horváth, L., Shao, Q.-M.: Large deviations and law of the iterated logarithm for partial sums normalized by the largest absolute observation. Ann. Probab. 24, 1368–1387 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jing, B.-Y., Shao, Q.-M., Zhou, W.: Towards a universal self-normalized moderate deviation. Trans. Am. Math. Soc. 360, 4263–4285 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kallenberg, O.: Canonical representations and convergence criteria for processes with interchangeable increments. Z. Wahrsch. Verw. Geb. 27, 23–36 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002)

    Book  MATH  Google Scholar 

  19. Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Springer, New York (2005)

    MATH  Google Scholar 

  20. Kesten, H., Maller, R.A.: Infinite limits and infinite limit points for random walks and trimmed sums. Ann. Probab. 22, 1475–1513 (1994)

    Article  MathSciNet  Google Scholar 

  21. Logan, B.F., Mallows, C.L., Rice, S.O., Shepp, L.A.: Limit distributions of self-normalized sums. Ann. Probab. 1, 788–809 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Martsynyuk, Yu.V.: Functional asymptotic confidence intervals for the slope in linear error-in-variables models. Acta Math. Hung. 123, 133–168 (2009a)

    Article  MATH  MathSciNet  Google Scholar 

  23. Martsynyuk, Yu.V.: Functional asymptotic confidence intervals for a common mean of independent random variables. Electron. J. Stat. 3, 25–40 (2009b)

    Article  MATH  MathSciNet  Google Scholar 

  24. O’Brien, G.L.: A limit theorem for sample maxima and heavy branches in Galton-Watson trees. J. Appl. Probab. 17, 539–545 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Petrov, V.V.: Limit Theorems of Probability Theory, Sequences of Independent Random Variables. Clarendon, Oxford (1995)

    MATH  Google Scholar 

  26. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  27. Shao, Q.-M.: Self-normalized large deviations. Ann. Probab. 25, 285–328 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shao, Q.-M.: Recent developments on self-normalized limit theorems. In: Szyszkowicz, B. (ed.) Asymptotic Methods in Probability and Statistics. A Volume in Honour of M. Csörgő, pp. 467–480. North-Holland, Amsterdam (1998)

    Chapter  Google Scholar 

  29. Shao, Q.-M.: Recent progress on self-normalized limit theorems. In: Lai, T.L., Yang, H., Yung, S.P. (eds.) Probability, Finance and Insurance. World Scientific, Singapore (2004)

    Google Scholar 

  30. Shao, Q.-M.: Stein’s method, self-normalized limit theory and applications. In: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), Hyderabad, pp. 2325–2350 (2010)

    Google Scholar 

Download references

Acknowledgements

We wish to thank two referees for their careful reading of our manuscript. The present version reflects their much appreciated remarks and suggestions. In particular, we thank them for calling our attention to the newly added reference Kallenberg [19], and for advising us that the proof of our Theorem 2.1 needs to be done more carefully, taking into account the remarks made in this regard. The present revised version of the proof of our Theorem 2.1 is done accordingly, with our sincere thanks attached herewith.

This research was supported by an NSERC Canada Discovery Grant of Miklós Csörgő at Carleton University and, partially, also by NSFC(No.10801122), the Fundamental Research Funds for the Central Universities, obtained by Zhishui Hu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhishui Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Csörgő, M., Hu, Z. (2015). Weak Convergence of Self-normalized Partial Sums Processes. In: Dawson, D., Kulik, R., Ould Haye, M., Szyszkowicz, B., Zhao, Y. (eds) Asymptotic Laws and Methods in Stochastics. Fields Institute Communications, vol 76. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3076-0_1

Download citation

Publish with us

Policies and ethics