Skip to main content
Log in

Periodic solutions of abstract neutral functional differential equations with infinite delay

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We establish the existence of mild solutions and periodic mild solutions for a class of abstract first-order non-autonomous neutral functional differential equations with infinite delay in a Banach space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Adimy and K. Ezzinbi, A class of linear partial neutral functional-differential equations with nondense domain, J. Diff. Eqns., 147 (1998), 285–332.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Adimy and K. Ezzinbi, Strict solutions of nonlinear hyperbolic neutral differential equations, Applied Maths. Letters, 12 (1999), 107–112.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Adimy, K. Ezzinbi and M. Laklach, Existence of solutions for a class of partial neutral differential equations, C.R. Acad. Sci. Paris Ser. I Math., 330 (2000), 957–962.

    MATH  MathSciNet  Google Scholar 

  4. M. Adimy, H. Bouzahir and K. Ezzinbi, Existence and stability for some partial neutral functional differential equations with infinite delay, J. Math. Anal. Appl., 294 (2004), 438–461.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Balachandran and R. Sakthivel, Controllability of neutral functional integrodifferential systems in Banach space, Comp. Maths. Appl., 39 (2000), 117–126.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Balachandran and A. Leelamani, Null controllability of neutral evolution integrodifferential systems with infinite delay, Mathematical Problems in Engineering, (2006), 1–18.

  7. Y. Chen, The existence of periodic solutions for a class of neutral differential difference equations, J. Aust. Math. Soc. Ser. B, 33 (1992), 507–516.

    Article  Google Scholar 

  8. R. Datko, Representation of solutions and stability of linear differential-difference equations in a Banach space, J. Diff. Eqns., 29 (1978), 105–166.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc. (New York, 1969).

    MATH  Google Scholar 

  10. X. Fu, Controllability of neutral functional differential systems in abstract space, Appl. Math. Comp., 141 (2003), 281–296.

    Article  MATH  Google Scholar 

  11. X. Fu and K. Ezzinbi, Existence of solutions for neutral functional differential evolution equations, Nonlinear Anal., TMA, 54 (2003), 215–227.

    Article  MATH  MathSciNet  Google Scholar 

  12. X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249–267.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Gopalsamy and B. G. Zhang, On a neutral delay logistic equation, Dynamics and Stability of Systems, 2 (1988), 183–195.

    MathSciNet  Google Scholar 

  14. K. Gopalsamy and P-X. Weng, On the stability of a neutral integro-partial differential system, Bull. Inst. Maths. Acad. Sinica, 20 (1992), 267–284.

    MATH  MathSciNet  Google Scholar 

  15. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, Springer-Verlag, Applied Mathematical Sciences, 99 (New York, 1993).

    MATH  Google Scholar 

  16. J. K. Hale, Partial neutral functional-differential equations, Rev. Roumaine Math. Pures Appl., 39 (1994), 339–344.

    MATH  MathSciNet  Google Scholar 

  17. J. K. Hale, Coupled oscillators on a circle, Resenhas, 1 (1994), 441–457.

    MATH  MathSciNet  Google Scholar 

  18. E. Hernández and H. R. Henríquez, Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499–522.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Hernández and H. R. Henríquez, Existence results for partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 452–475.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Hino, S. Murakami and T. Naito, Functional-Differential Equations with Infinite Delay, Springer-Verlag, Lecture Notes in Mathematics, 1473 (Berlin, 1991).

    MATH  Google Scholar 

  21. V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Acad. Publ. (Dordrecht, 1999).

    MATH  Google Scholar 

  22. Y. Kuang and H. L. Smith, Global stability in diffusive delay Lotka-Volterra systems, Diff. and Integral Eqns., 4 (1991), 117–128.

    MATH  MathSciNet  Google Scholar 

  23. V. Lakshmikantham, L. Wen and B. Zhang, Theory of Differential Equations with Unbounded Delay, Kluwer Acad. Publ. (Dordrecht, 1994).

    MATH  Google Scholar 

  24. N. I. Mahmudov and S. Zorlu, Approximate controllability of semilinear neutral systems in Hilbert spaces, J. Applied Maths. & Stoch. Anal., 16 (2003), 1–10.

    Article  MathSciNet  Google Scholar 

  25. C-M. Marle, Mesures et Probabilités, Hermann (Paris, 1974).

    MATH  Google Scholar 

  26. R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Robert E. Krieger Publ. Co. (Florida, 1987).

    Google Scholar 

  27. M. C. Memory, Stable and unstable manifolds for partial functional differential equation, Nonlinear Analysis, TMA, 16 (1991), 131–142.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag (New York, 1983).

    MATH  Google Scholar 

  29. R. Schnaubelt, Asymptotic behaviour of parabolic nonautonomous evolution equations, Springer-Verlag, Lect. Notes in Mathematics, 1855 (Berlin, 2004), pp. 401–472.

    Google Scholar 

  30. H. Tanabe, Equations of Evolution, Pitman (London, 1979).

    MATH  Google Scholar 

  31. K. Wang, On the unique existence of periodic solutions of neutral Volterra integrodifferential equations, Periodica Math. Hungar., 21 (1990), 21–29.

    Article  MATH  Google Scholar 

  32. P-X. Weng, Oscillation in periodic neutral parabolic differential system, Bull. Inst. Maths. Acad. Sinica, 24 (1996), 33–47.

    MATH  MathSciNet  Google Scholar 

  33. J. Wu and H. Xia, The existence of periodic solutions to integro-differential equations of neutral type via limiting equations, Math. Proc. Camb. Phil. Soc., 112 (1992), 403–418.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Wu, Global continua of periodic solutions to some difference-differential equations of neutral type, Tôhoku Math. J., 45 (1993), 67–88.

    Article  MATH  Google Scholar 

  35. J. Wu and H. Xia, Self-sustained oscillations in a ring array of coupled lossless transmission lines, J. Diff. Eqns., 124 (1996), 247–278.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Wu and H. Xia, Rotating waves in neutral partial functional-differential equations, J. Dynam. Diff. Eqns., 11 (1999), 209–238.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional differential equations, Proc. Roy. Soc. Edin., 129 A (1999), 199–220.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Henriquez.

Additional information

This research was supported by FONDECYT-CONICYT, Grant 1050314.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriquez, H.R. Periodic solutions of abstract neutral functional differential equations with infinite delay. Acta Math Hung 121, 203–227 (2008). https://doi.org/10.1007/s10474-008-7009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-008-7009-x

Key words and phrases

2000 Mathematics Subject Classification

Navigation