Skip to main content
Log in

Energy conservation for the weak solutions to the 3D compressible nematic liquid crystal flow

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akramov I, Dębiec T, Skipper J, Wiedemann E. Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum. Anal PDE, 2020, 13: 789–811

    Article  MathSciNet  Google Scholar 

  2. Bardos C, Titi E S. Onsager’s conjecture for the incompressible Euler equations in bounded domains. Arch Ration Mech Anal, 2018, 228: 197–207

    Article  MathSciNet  Google Scholar 

  3. Beris A, Edwards B. Thermodynamics of Flowing Systems. Oxford: Oxford University Press, 1994

    Google Scholar 

  4. Buckmaster T, De Lellis C, Isett P, Székelyhidi Jr L. Anomalous dissipation for 1/5-Hölder Euler flows. Ann Math, 2015, 182: 127–172

    Article  MathSciNet  Google Scholar 

  5. Buckmaster T, De Lellis C, Székelyhidi Jr L. Dissipative Euler flows with Onsager-critical spatial regularity. Comm Pure Appl Math, 2016, 69: 1613–1670

    Article  MathSciNet  Google Scholar 

  6. Chen X, Cheng H. Regularity criterion for 3D nematic liquid crystal flows in terms of finite frequency parts in \(\dot{B}_{\infty,\infty}^{-1}\). Bound Value Probl, 2021, 2021: Art 23

  7. Chen X, Fan J. A note on regularity criterion for 3D compressible nematic liquid crystal flows. J Inequal Appl, 2012, 2012: Art 59

  8. Chen M, Liang Z, Wang D, Xu R. Energy equality in compressible fluids with physical boundaries. SIAM J Math Anal, 2020, 52: 1363–1385

    Article  MathSciNet  Google Scholar 

  9. Chandrasekhar S. Liquid Crystals. Cambridge: Cambridge University Press, 1992

    Book  Google Scholar 

  10. Cheskidov A, Constantin P, Friedlander S, Shvydkoy R. Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity, 2008, 21: 1233–1252

    Article  MathSciNet  Google Scholar 

  11. Constantin P, Weinan E, Titi E S. Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun Math Phys, 1994, 165: 207–209

    Article  ADS  MathSciNet  Google Scholar 

  12. Daneri S, Runa E, Székelyhidi L. Non-uniqueness for the Euler equations up to Onsager’s critical exponent. Ann PDE, 2021, 7 (1): Art 8

  13. De Gennes P G. The Physics of Liquid Crystals. Oxford: Oxford University Press, 1974

    Google Scholar 

  14. De Lellis C, László Jr. Dissipative continuous Euler flows. Invent Math, 2013, 193: 377–407

    Article  ADS  MathSciNet  Google Scholar 

  15. Ericksen J L. Hydrostatic theory of liquid crystal. Arch Rational Mech Anal, 1962, 9: 371–378

    Article  ADS  MathSciNet  Google Scholar 

  16. Eyink G L. Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D: Nonlinear Phenomena, 1994, 78(3/4): 222–240

    Article  ADS  MathSciNet  Google Scholar 

  17. Ericksen J. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5: 23–34

    Article  MathSciNet  CAS  Google Scholar 

  18. Fan J, Li F. Uniform local well-posedness and regularity criterion for the density-dependent incompressible flow of liquid crystals. Commun Math Sci, 2014, 12: 1185–1197

    Article  MathSciNet  Google Scholar 

  19. Fan J, Ozawa T. Regularity criterion for the 3D nematic liquid crystal flows. ISRN Math Anal, 2012, 2012: Art 935045

  20. Fan J, Ozawa T. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 2009, 25: 859–867

    Article  MathSciNet  Google Scholar 

  21. Fan J, Guo B. Regularity criterion to some liquid crystal models and the Landau-Lifshitz equations in ℝ3. Sci China Ser A, 2008, 51: 1787–1797

    Article  MathSciNet  Google Scholar 

  22. Feireisl E, Gwiazda P, Świerczewska A, Wiedemann E. Regularity and energy conservation for the compressible Euler equations. Arch Ration Mech Anal, 2017, 223: 1375–1395

    Article  MathSciNet  Google Scholar 

  23. Feireisl E, Rocca E, Schimperna G. On a non-isothermal model for nematic liquid crystal. Nonlinearity, 2011, 24: 243–257

    Article  ADS  MathSciNet  Google Scholar 

  24. Frank F. Liquid crystals. On the theory of liquid crystals. Discuss Faraday Soc, 1958, 25: 19–28

    Article  Google Scholar 

  25. Gala S, Liu Q, Ragusa M. Logarithmically improved regularity criterion for the nematic liquid crystal flows in \(\dot{B}_{\infty,\infty}^{-1}\) space. Comput Math Appl, 2013, 65: 1738–1745

    Article  MathSciNet  Google Scholar 

  26. Gao J, Tao Q, Yao Z. Strong solutions to the density-dependent incompressible nematic liquid crystal flows. J Differential Equations, 2016, 260: 3691–3748

    Article  ADS  MathSciNet  Google Scholar 

  27. Gao Z, Tan Z. Blow-up criterion of classical solutions for the incompressible nematic liquid crystal flows. Acta Math Sci, 2017, 37B: 1632–1638

    Article  MathSciNet  Google Scholar 

  28. Guo S, Tan Z. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinet Relat Models, 2015, 8: 691–706

    Article  MathSciNet  Google Scholar 

  29. Hardt R, Kinderlehrer D. Mathematical Questions of Liquid Crystal Theory. New York: Springer-Verlag, 1987

    Book  Google Scholar 

  30. Huang T, Wang C, Wen H. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285–311

    Article  MathSciNet  Google Scholar 

  31. Isett P. A proof of Onsager’s conjecture. Ann Math, 2018, 188: 871–963

    Article  MathSciNet  Google Scholar 

  32. Jiang F, Jiang S, Wang D. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Rational Mech Anal, 2014, 214: 403–451

    Article  ADS  MathSciNet  Google Scholar 

  33. Jiang F, Jiang S, Wang D. On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265: 3369–3397

    Article  MathSciNet  Google Scholar 

  34. Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Math Methods Appl Sci, 2009, 32: 2243–2266

    Article  MathSciNet  Google Scholar 

  35. Leslie F M. Some constitutive equations for liquid crystals. Arch Rational Mech Anal, 1968, 28: 265–283

    Article  ADS  MathSciNet  Google Scholar 

  36. Leslie F. Some constitutive equations for anisotropic fluids. Quarterly Journal of Mechanics & Applied Mathematics, 1966, 3: 357–370

    Article  MathSciNet  Google Scholar 

  37. Leslie F. Some constitutive equations for liquid crystals. Arch Rational Mech Anal, 1968, 28: 265–283

    Article  ADS  MathSciNet  Google Scholar 

  38. Leslie F. An analysis of a flow instability in nematic liquid crystals. Journal of Physics D Applied Physics, 1976, 9: 925–937

    Article  ADS  Google Scholar 

  39. Li Q, Yuan B. A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field. AIMS Math, 2022, 7: 4168–4175

    Article  MathSciNet  Google Scholar 

  40. Lin F H. Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Comm Pure Appl Math, 1989, 42: 789–814

    Article  MathSciNet  Google Scholar 

  41. Lions P L. Mathematical Topics in Fluid Mechanics. Vol 2: Compressible Mdels. New York: Oxford University Press, 1998

    Google Scholar 

  42. Liu Q, Zhao J, Cui S. A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity. J Math Phys, 2011, 52: 033102

    Article  ADS  MathSciNet  Google Scholar 

  43. Liu Q, Zhao J. A regularity criterion for the solution of nematic liquid crystal flows in terms of the \(\dot{B}_{\infty,\infty}^{-1}\)-norm. J Math Anal Appl, 2013, 407: 557–566

    Article  MathSciNet  Google Scholar 

  44. Nirenberg L. On elliptic differential equations. Ann Scuola Norm Sup Pisa Cl Sci, 1959, 13: 115–162

    MathSciNet  Google Scholar 

  45. Onsager L. Statistical hydrodynamics. Nuovo Cimento, 1949, 6: 279–287

    Article  MathSciNet  CAS  Google Scholar 

  46. Oseen C. The theory of liquid crystals. Discuss Faraday Soc, 1933, 29: 883–899

    Article  CAS  Google Scholar 

  47. Qian C. Remarks on the regularity criterion for the nematic liquid crystal flows in R3. Appl Math Comput, 2016, 274: 679–689

    MathSciNet  Google Scholar 

  48. Qian C. A further note on the regularity criterion for the 3D nematic liquid crystal flows. Appl Math Comput, 2016, 290: 258–266

    MathSciNet  Google Scholar 

  49. Serrin J. The initial value problem for the Navier-Stokes equations//Langer R. Nonlinear Problems. Madison: University of Wisconsin Press, 1963: 69–98

    Google Scholar 

  50. Shinbrot M. The energy equation for the Navier-Stokes system. SIAM J Math Anal, 1974, 5: 948–954

    Article  MathSciNet  Google Scholar 

  51. Wang D H, Yu C. Global weak solution and large time behavior for the compressible flow of liquid crystals. Arch Rational Mech Anal, 2012, 204: 881–915

    Article  ADS  MathSciNet  Google Scholar 

  52. Wang T, Zhao X, Chen Y, Zhang M. Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions. J Math Anal Appl, 2019, 480(2): 123373

    Article  MathSciNet  Google Scholar 

  53. Wang X, Liu S. Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain. Nonlinear Anal: Real World Appl, 2021, 62: 103359

    Article  MathSciNet  Google Scholar 

  54. Wang Y, Ye Y. Energy conservation for weak solutions to the 3D Navier-Stokes-Cahn-Hilliard system. Appl Math Lett, 2022, 123: 107587

    Article  MathSciNet  Google Scholar 

  55. Wang G, Zuo B. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete Contin Dyn Syst Ser B, 2022, 27(2): 1001–1027

    Article  MathSciNet  Google Scholar 

  56. Wang Y, Huang X. On center singularity for compressible spherically symmetric nematic liquid crystal flows. J Differential Equations, 2018, 264: 5197–5220

    Article  ADS  MathSciNet  Google Scholar 

  57. Wei R, Yao Z, Li Y. Regularity criterion for the nematic liquid crystal flows in terms of velocity. Abstr Appl Anal, 2014, 2014: Art 234809

  58. Yu C. Energy conservation for the weak solutions of the compressible Navier-Stokes equations. Arch Rational Mech Anal, 2017, 225: 1073–1087

    Article  ADS  MathSciNet  Google Scholar 

  59. Zhang Z, Tang T, Liu L. An Osgood type regularity criterion for the liquid crystal flows. NoDEA Nonlinear Differential Equations Appl, 2014, 21: 253–262

    Article  MathSciNet  Google Scholar 

  60. Zhang Z, Yang X. A regularity criterion for the 3D density-dependent incompressible flow of liquid crystals with vacuum. Ann Polon Math, 2015, 115: 165–177

    Article  MathSciNet  Google Scholar 

  61. Zhou Y, Fan J. A regularity criterion for the nematic liquid crystal flows. J Inequal Appl, 2010, 2010: Art 589697

  62. Zhou Y, Fan J, Nakamura G. Global strong solution to the density-dependent 2-D liquid crystal flows. Abstr Appl Anal, 2013, 2013: Art 947291

  63. Zöcher H. The effect of a magneticfield on the nematic state. Discuss Faraday Soc, 1933, 29: 945–957

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

Tan’s research was support by the NSFC (12071391, 12231016) and the Guangdong Basic and Applied Basic Research Foundation (2022A1515010860). Li’s research was support by the China Postdoctoral Science Foundation (2023M742401).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Li, X. & Yang, H. Energy conservation for the weak solutions to the 3D compressible nematic liquid crystal flow. Acta Math Sci 44, 851–864 (2024). https://doi.org/10.1007/s10473-024-0305-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0305-x

Key words

2020 MR Subject Classification

Navigation