Skip to main content
Log in

The Uniform Convergence of a DG Method for a Singularly Perturbed Volterra Integro-Differential Equation

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

The purpose of this work is to implement a discontinuous Galerkin (DG) method with a one-sided flux for a singularly perturbed Volterra integro-differential equation (VIDE) with a smooth kernel. First, the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided. Then the existence and uniqueness of the DG solution are proven. Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established. Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants, the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter ϵ when the space of polynomials with degree p is used. A numerical experiment validates the theoretical results. Furthermore, an ultra-convergence order 2p + 1 at the nodes for the one-sided flux, uniform with respect to the singular perturbation parameter ϵ, is observed numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brunner H. Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  2. Roos H G, Stynes M, Tobiska L. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problem. Berlin: Springer, 2008

    MATH  Google Scholar 

  3. Ramos J I. Exponential techniques and implicit Runge-Kutta methods for singularly-perturbed Volterra integro-differential equations. Neural, Parallel & Sci Comput, 2008, 16: 387–404

    MathSciNet  MATH  Google Scholar 

  4. Amiraliyev G M, Sevgin A. Uniform difference method for singularly perturbed Volterra integro-differential equations. Appl Math Comput, 2006, 179: 731–741

    MathSciNet  MATH  Google Scholar 

  5. Cen Z D, Xi L F. A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies//Processings of the 5th WSEAS Int Conference on Information Security and Privacy, Venice, Italy, 2006, November 20–22: 147–151

  6. Mbroh N A, Noutchie N C O, Masssoukou R Y M. A second order finite difference scheme for singularly perturbed Volterra integro-differential equation. Alex Eng J, 2020, 59: 2441–2447

    Article  Google Scholar 

  7. Iragi B C, Munyakazi J B. New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations. Appl Math Infor Sci, 2018, 12: 517–527

    Article  MathSciNet  Google Scholar 

  8. Iragi B C, Munyakazi J B. A uniform convergent numerical method for a singularly perturbed Volterra integro-differential equation. Int J Comput Math, 2020, 97: 759–771

    Article  MathSciNet  MATH  Google Scholar 

  9. Yapman Ö, Amiraliyev G M. A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation. Int J Comput Math, 2020, 97: 1293–1302

    Article  MathSciNet  MATH  Google Scholar 

  10. Long G Q, Liu L B, Huang Z T. Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations. Numer Funt Anal Opt, 2021, 42: 739–757

    Article  MathSciNet  MATH  Google Scholar 

  11. Kauthen J P. Implicit Runge-Kutta methods for some integrodifferential-algebraic equations. Appl Numer Math, 1993, 13: 125–134

    Article  MathSciNet  MATH  Google Scholar 

  12. Horvat V, Rogina M. Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations. Comput Appl Math, 2002, 140: 381–402

    Article  MathSciNet  MATH  Google Scholar 

  13. Tao X, Zhang Y H. The coupled method for singularly perturbed Volterra integro-differential equations. Adv Differ Equ, 2019, 2019: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  14. Reed W H, Hill T R. Triangular mesh methods for neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973

  15. Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  16. Celiker F, Cockburn B. Superconvergence of the numerical traces of discontinous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math Comput, 2007, 76: 67–96

    Article  MATH  Google Scholar 

  17. Xie Z Q, Zhang Z. Superconvergence of DG method for one-dimensional singularly perturbed problems. J Comput Math, 2007, 25: 185–200

    MathSciNet  MATH  Google Scholar 

  18. Xie Z Q, Zhang Z. Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math Comput, 2010, 79: 35–45

    Article  MathSciNet  MATH  Google Scholar 

  19. Zeng Z K, Chen Y P. A local discontinuous Galerkin method for fractional diffusion equations. Acta Mathematica Scientia, 2023, 43B(2): 839–854

    Article  MathSciNet  MATH  Google Scholar 

  20. Larsson S, Thomée V, Wahlbin L B. Numerical solution of parabolic integro-differential equations by the discontinuos Galerkin method. Math Comput, 1998, 87: 45–71

    Article  MATH  Google Scholar 

  21. Brunner H, Schötzau D. hp-Discontinous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J Numer Anal, 2006, 44: 224–245

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen C M, Shih T. Finite Element Methods for Integrodifferential Equations. Singapore: World Scientific, 1998

    Book  MATH  Google Scholar 

  23. Kauthen J P. A survey of singularly perturbed Volterra equations. Appl Numer Math, 1997, 24: 95–114

    Article  MathSciNet  MATH  Google Scholar 

  24. Angell J S, Olmstead W E. Singularly perturbed Volterra integral equations. SIAM J Numer Math, 1987, 47(1): 1–14

    Article  MathSciNet  MATH  Google Scholar 

  25. Angell J S, Olmstead W E. Singularly perturbed Volterra integral equations II. SIAM J Numer Math, 1987, 47(6): 1150–1162

    Article  MathSciNet  MATH  Google Scholar 

  26. Bijura A M. Rigorous results on the asymptotic solutions of singularly perturbed nonlinear Volterra integral equations. J Integral Equ Appl, 2002, 14(2): 119–149

    Article  MathSciNet  MATH  Google Scholar 

  27. Bijura A M. Asymptotics of integrodifferential models with integrable kernels. Int J Math Math Sci, 2003, 2003(25): 1577–1598

    Article  MathSciNet  MATH  Google Scholar 

  28. Jordan G S. A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type. Proc Roy Soc Edinburgh Sect A, 1978, 80: 235–247

    Article  MathSciNet  MATH  Google Scholar 

  29. Jordan G S. Some nonlinear singularly perturbed Volterra integro-differential equations//Londen S, Staffans O. Volterra Equations. Berlin: Springer, 1979: 107–119

    Google Scholar 

  30. Lodge A S, Mcleod J B, Nohel J E. A nonlinear singularly perturbed Volterra integrodifferential equation occuring in polymer rheology. Proc Roy Soc Edinburgh Sect A, 1978, 80: 99–137

    Article  MathSciNet  MATH  Google Scholar 

  31. Mustapha K, Mclean W. Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math Comput, 2009, 78(268): 1975–1995

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqing Xie.

Additional information

Conflict of Interest

Ziqing XIE is an editorial board member for Acta Mathematica Scientia and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Tao’s research was supported by the National Natural Science Foundation of China (12001189). Xie’s research was supported by the National Natural Science Foundation of China (11171104, 12171148).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Xie, Z. The Uniform Convergence of a DG Method for a Singularly Perturbed Volterra Integro-Differential Equation. Acta Math Sci 43, 2159–2178 (2023). https://doi.org/10.1007/s10473-023-0514-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0514-8

Key words

2010 MR Subject Classification

Navigation