Skip to main content
Log in

Obstacle Problems on RCD(K, N) Metric Measure Spaces

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we solve the obstacle problems on metric measure spaces with generalized Ricci lower bounds. We show the existence and Lipschitz continuity of the solutions, and then we establish some regularities of the free boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L. Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv Math, 2001, 159(1): 51–67

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio L. Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-Valued Anal, 2022, 10(2/3): 111–128

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio L. Calculus, heat flow and curvature-dimension bounds in metric measure spaces//Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary Lectures. Hackensack, NJ: World Sci Publ, 2018: 301–340

    Google Scholar 

  4. Ambrosio L, Brué E, Semola D. Rigidity of the 1-Bakry-Émery inequality and sets of finite perimeter in RCD spaces. Geom Funct Anal, 2019, 29(4): 949–1001

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio L, Gigli N, Savaré G. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math, 2014, 195(2): 289–391

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio L, Gigli N, Savaré G. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math J, 2014, 163(7): 1405–1490

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio L, Gigli N, Savaré G. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann Probab, 2015, 43(1): 339–404

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio L, Honda S. New stability results for sequences of metric measure spaces with uniform Ricci bounds from below. Measure theory in non-smooth spaces//Partial Differ Equ Meas Theory. Warsaw: De Gruyter Open, 2017: 1–51

    Google Scholar 

  9. Ambrosio L, Mondino A, Savaré G. On the Bakry-Émery condition, the gradient estimates and the local-to-global property of RCD* (K, N) metric measure spaces. J Geom Anal, 2016, 26(1): 24–56

    Article  MathSciNet  MATH  Google Scholar 

  10. Björn A, Björn J. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, 17. Zürich: European Mathematical Society (EMS), 2011

    Google Scholar 

  11. Brué E, Pasqualetto E, Semola D. Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K, N) spaces. J Eur Math Soc, 2023, 25(2): 413–465

    Article  MathSciNet  MATH  Google Scholar 

  12. Brué E, Pasqualetto E, Semola D. Constancy of the dimension in codimension one and locality of the unit normal on RCD(K, N) spaces. preprint arXiv: 2109.12585

  13. Caffarelli L A. The regularity of free boundaries in higher dimensions. Acta Math, 1977, 139(3/4): 155–184

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli L A. The obstacle problem revisited. J Fourier Anal Appl, 1998 4(4/5): 383–402

    Article  MathSciNet  MATH  Google Scholar 

  15. Cavalletti F, Milman E. The globalization theorem for the curvature-dimension condition. Invent Math, 2021, 226(1): 1–137

    Article  MathSciNet  MATH  Google Scholar 

  16. Chan C K, Zhang H C, Zhu X P. Monotonicity formulas for parabolic free boundary problems on cones. Acta Math Sci, 2022, 42B(6): 2193–2203

    Article  MathSciNet  MATH  Google Scholar 

  17. Chan C K, Zhang H C, Zhu X P. One-phase free boundary problems on RCD metric measure spaces. preprint arXiv: 2112.06962

  18. Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9(3): 428–517

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheeger J, Colding T H. Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann of Math, 1996, 144(1): 189–237

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below. I. J Differential Geom, 1997, 46(3): 406–480

    Article  MathSciNet  MATH  Google Scholar 

  21. Colombo M, Spolaor L, Velichkov B. A logarithmic epiperimetric inequality for the obstacle problem. Geom Funct Anal, 2018, 28(4): 1029–1061

    Article  MathSciNet  MATH  Google Scholar 

  22. De Philippis G, Gigli N. Non-collapsed spaces with Ricci curvature bounded from below. J Éc Polytech Math, 2018, 5: 613–650

    Article  MathSciNet  MATH  Google Scholar 

  23. Erbar M, Kuwada K, Sturm K T. On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent Math, 2015, 201(3): 993–1071

    Article  MathSciNet  MATH  Google Scholar 

  24. Figalli A, Ros-Oton X, Serra J. Generic regularity of free boundaries for the obstacle problem. Publ Math Inst Hautes Études Sci, 2020, 132: 181–292

    Article  MathSciNet  MATH  Google Scholar 

  25. Figalli A, Serra J. On the fine structure of the free boundary for the classical obstacle problem. Invent Math, 2019, 215(1): 311–366

    Article  MathSciNet  MATH  Google Scholar 

  26. Gigli N. On the differential structure of metric measure spaces and applications. Mem Amer Math Soc, 2015, 236(1113): vi+91

    MathSciNet  MATH  Google Scholar 

  27. Gigli N, Mondino A, Savaré G. Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc Lond Math Soc, 2015, 111(5): 1071–1129

    MathSciNet  MATH  Google Scholar 

  28. Gigli N, Violo I Y. Monotonicity formulas for harmonic functions in RCD(0, N) spaces. preprint arXiv: 2101.03331

  29. Hajłasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, 2000, 145(688): x+101

    MATH  Google Scholar 

  30. Jiang R. Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential Anal, 2012, 37(3): 281–301

    Article  MathSciNet  MATH  Google Scholar 

  31. Kinnunen J, Shanmugalingam N. Regularity of quasi-minimizers on metric spaces. Manuscripta Math, 2001, 105(3): 401–423

    Article  MathSciNet  MATH  Google Scholar 

  32. Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math, 2009, 169(3): 903–991

    Article  MathSciNet  MATH  Google Scholar 

  33. Miranda Jr M. Functions of bounded variation on “good” metric spaces. J Math Pures Appl, 2003, 82(8): 975–1004

    Article  MathSciNet  MATH  Google Scholar 

  34. Mondino A, Naber A. Structure theory of metric measure spaces with lower Ricci curvature bounds. J Eur Math Soc, 2019, 21(6): 1809–1854

    Article  MathSciNet  MATH  Google Scholar 

  35. Monneau R. On the number of singularities for the obstacle problem in two dimensions. J Geom Anal, 2003, 13(2): 359–389

    Article  MathSciNet  MATH  Google Scholar 

  36. Petrunin A. Alexandrov meets Lott-Villani-Sturm. Münster J Math, 2011, 4: 53–64

    MathSciNet  MATH  Google Scholar 

  37. Shanmugalingam N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev Mat Iberoamericana, 2000, 16(2): 243–279

    Article  MathSciNet  MATH  Google Scholar 

  38. Sturm K T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65–131

    Article  MathSciNet  MATH  Google Scholar 

  39. Sturm K T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133–177

    Article  MathSciNet  MATH  Google Scholar 

  40. Villani C. Optimal Transport. Grundlehren der mathematischen Wissenschaften, 338. Berlin: Springer-Verlag, 2009

    Google Scholar 

  41. Weiss G S. A homogeneity improvement approach to the obstacle problem. Invent Math, 1999, 138(1): 23–50

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang H C, Zhu X P. Ricci curvature on Alexandrov spaces and rigidity theorems. Comm Anal Geom, 2010, 18(3): 503–553

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitan Lin.

Additional information

Conflict of Interest

The author declares no conflict of interest.

This work was supported by the National Key R&D program of China (2021YFA1003001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S. Obstacle Problems on RCD(K, N) Metric Measure Spaces. Acta Math Sci 43, 1925–1944 (2023). https://doi.org/10.1007/s10473-023-0501-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0501-0

Key words

2010 MR Subject Classification

Navigation