Skip to main content
Log in

The Existence and Stability of Normalized Solutions for a Bi-Harmonic Nonlinear Schrödinger Equation with Mixed Dispersion

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we study the ground state standing wave solutions for the focusing bi-harmonic nonlinear Schrödinger equation with a μ-Laplacian term (BNLS). Such BNLS models the propagation of intense laser beams in a bulk medium with a second-order dispersion term. Denoting by Qp the ground state for the BNLS with μ = 0, we prove that in the mass-subcritical regime \(p \in \left( {1,1 + {8 \over d}} \right)\), there exist orbit ally stable ground state solutions for the BNLS when μ ∈ (−λ0, ∞) for some \({\lambda _0} = {\lambda _0}\left( {p,d,{{\left\| {{Q_p}} \right\|}_{{L^2}}}} \right) > \,0\). Moreover, in the mass-critical case \(p = 1 + {8 \over d}\), we prove the orbital stability on a certain mass level below \({\left\| {{Q^ \ast }} \right\|_{{L^2}}}\) provided that μ ∈ (−λ1, 0), where \({\lambda _1} = {{4\left\| {\nabla {Q^ \ast }} \right\|_{{L^2}}^2} \over {\left\| {{Q^ \ast }} \right\|_{{L^2}}^2}}\) and Q* = Q1+8/d. The proofs are mainly based on the profile decomposition and a sharp Gagliardo-Nirenberg type inequality. Our treatment allows us to fill the gap concerning the existence of the ground states for the BNLS when μ is negative and \(p \in \left( {1,1 + {8 \over d}} \right]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baruch G, Fibich G. Singular solutions of the L2-supercritical biharmonic nonlinear Schrödinger equation. Nonlinearity, 2011, 24: 1843–1859

    Article  MATH  Google Scholar 

  2. Baruch G, Fibich G, Mandelbaum E. Singular solutions of the biharmonic nonlinear Schrödinger equation. SIAM J Appl Math, 2010, 78: 3319–3341

    Article  MATH  Google Scholar 

  3. Bellazzini J, Frank R, Visciglia N. Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems. Math Ann, 2014, 360: 653–673

    Article  MATH  Google Scholar 

  4. Ben-Artzi M, Koch H, Saut J C. Dispersion estimates for fourth order Schrödinger equations. C R Acad Sci Paris Ser I Math, 2000, 330: 87–92

    Article  MATH  Google Scholar 

  5. Bonheure D, Casteras J, Dos Santos E M, Nascimento R. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation. SIAM J Math Anal, 2018, 50: 5027–5071

    Article  MATH  Google Scholar 

  6. Bonheure D, Casteras J, Gou T, Jeanjean L. Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime. Trans Amer Math Soc, 2019, 372: 2167–2212

    Article  MATH  Google Scholar 

  7. Bonheure D, Casteras J, Gou T, Jeanjean L. Strong instability of ground states to a fourth order Schröodinger equation. Int Math Res Not, 2019, 2019(17): 5299–5315

    Article  MATH  Google Scholar 

  8. Bonheure D, Nascimento R. Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion//Carvalho A N, et al. Contributions to Nonlinear Elliptic Equations and Systems. Progr in Nonlinear Differential Equations and Appl. Switzerland: Springer Inter Publ, 2015: 31–53

    Chapter  MATH  Google Scholar 

  9. Boulenger T, Lenzmann E. Blowup for biharmonic NLS. Ann Sci Éc Norm Supér, 2017, 50: 503–544

    Article  MATH  Google Scholar 

  10. Cazenave T. Semilinear Schroödinger Equations. Providence, RI: Amer Math Soc, 2003

    Google Scholar 

  11. Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schroödinger equations. Commun Math Phys, 1982, 85: 549–561

    Article  MATH  Google Scholar 

  12. Feng W, Stanislavova M, Stefanov A. On the spectral stability of ground states of semi-linear Schröodinger and Klein-Gordon equations with fractional dispersion. Comm Pure Appl Anal, 2018, 17: 1371–1385

    Article  MATH  Google Scholar 

  13. Fibich G, Ilan B, Papanicolaou G. Self-focusing with fourth-order dispersion. SIAM J Appl Math, 2002, 62: 1437–1462

    Article  MATH  Google Scholar 

  14. Frank R, Lenzmann E. Uniqueness of non-linear ground states for fractional Laplacian in ℝ. Acta Math, 2013, 210: 261–318

    Article  MATH  Google Scholar 

  15. Fukuizumi R, Ohta M. Stability of standing waves for nonlinear Schroödinger equations with potentials. Differential and Integral Equations, 2003, 16: 111–128

    MATH  Google Scholar 

  16. Gérard P. Description du defaut de compacite de l’injection de Sobolev. ESAIM Control Optim Calc Var, 1998, 3: 213–233

    Article  Google Scholar 

  17. Gou T X. Existence and orbital stability of normalized solutions for nonlinear Schrödinger equations[D]. Bourgogne: Université Bourgogne France-Cometé, 2017

    Google Scholar 

  18. Grillakis M, Shatah J, Strauss W. Stability theory of solitary waves in the presence of symmetry I. J Funct Anal, 1987, 74: 160–197

    Article  MATH  Google Scholar 

  19. Hmidi T, Keraani S. Blowup theory for the critical nonlinear Schroödinger equations revisited. Int Math Res Not, 2005, 46: 2815–2828

    Article  MATH  Google Scholar 

  20. Ivanov B A, Kosevich A M. Stable three-dimensional small-amplitude soliton in magnetic materials. So J Low Temp Phys, 1983, 9: 439–442

    Google Scholar 

  21. Karpman V I. Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schröodinger-type equations. Phys Rev E, 1996, 53: 1336–1339

    Article  Google Scholar 

  22. Karpman V I, Shagalov A G. Stability of soliton described by nonlinear Schröodinger type equations with higher-order dispersion. Phys D, 2000, 144: 194–210

    Article  MATH  Google Scholar 

  23. Kenig C, Ponce G, Vega L. Oscillatory integrals and regularity of dispersive equations. Indiana Univ Math J, 1991, 40: 33–69

    Article  MATH  Google Scholar 

  24. Levandosky S. Stability and instability of fourth-order solitary waves. J Dynam Differential Equations, 1998, 10: 151–188

    Article  Google Scholar 

  25. Lin Z, Zeng C. Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs. Mem Amer Math Soc, 2022, 275: 1347

    MATH  Google Scholar 

  26. Miao C X, Xu G X, Zhao L F. Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth-order in the radial case. J Differential Equations, 2009, 246: 3715–3749

    Article  MATH  Google Scholar 

  27. Natali F, Pastor A. The Fourth-order dispersive nonlinear Schrödinger equation: orbital stability of a standing wave. SIAM J Appl Dyna Syst, 2015, 14: 1326–1347

    Article  MATH  Google Scholar 

  28. Pausader B. Global well-posedness for energy critical fourth-order Schröodinger equations in the radial case. Dyn Partial Differ Equ, 2007, 4: 197–225

    Article  MATH  Google Scholar 

  29. Pausader B, Shao S L. The mass-critical fourth-order Schröodinger equation in high dimensions. J Hyperbolic Differ Equ, 2010, 7: 651–705

    Article  MATH  Google Scholar 

  30. Posukhovskyi I, Stefanov A. On the normalized ground states for the Kawahara and a fourth-order NLS. Discrete Contin Dyn Syst-A, 2020, 40: 4131–4162

    Article  MATH  Google Scholar 

  31. Segata J. Modified wave operators for the fourth-order non-linear Schrödinger-type equation with cubic non-linearity. Math Meth Appl Sci, 2006, 26: 1785–1800

    Article  MATH  Google Scholar 

  32. Segata J. Well-posedness and existence of standing waves for the fourth-order nonlinear Schrödinger type equation. Discrete Contin Dyn Syst, 2010, 27: 1093–1105

    Article  MATH  Google Scholar 

  33. Sulem C, Sulem P L. The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. New York: Springer-Verlag, 1999

    MATH  Google Scholar 

  34. Turitsyn S. Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons (in Russian). Teoret Mat Fiz, 1985, 64: 226–232

    Google Scholar 

  35. Weinstein M. Nonlinear Schröodinger equations and sharp interpolation estimates. Commun Math Phys, 1983, 87: 567–576

    Article  MATH  Google Scholar 

  36. Weinstein M. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun Pure Appl Math, 1986, 34: 51–68

    Article  MATH  Google Scholar 

  37. Zhang J. Stability of attractive Bose-Einstein condensates. J Statistical Physics, 2000, 101: 731–746

    Article  MATH  Google Scholar 

  38. Zhang J, Zheng S J, Zhu S H. Orbital stability of standing waves for fractional Hartree equation with unbounded potentials. Contemp Math, 2019, 725: 265–275

    Article  MATH  Google Scholar 

  39. Zhang J, Zhu S H. Stability of standing waves for the nonlinear fractional Schröodinger equation. J Dynamics and Differential Equations, 2017, 29: 1017–1030

    Article  MATH  Google Scholar 

  40. Zhu S H, Zhang J, Yang H. Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation. Dyn Partial Differ Equ, 2010, 7: 187–205

    Article  MATH  Google Scholar 

  41. Zhu S H, Zhang J, Yang H. Biharmonic nonlinear Schrödinger equation and the profile decomposition. Nonlinear Anal, 2011, 74: 6244–6255

    Article  MATH  Google Scholar 

  42. Zhu S H. On the blow-up solutions for the nonlinear fractional Schrödinger equation. J Differential Equations, 2016, 261: 1506–1531

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Shijun Zheng would like to thank Atanas Stefanov and Kai Yang for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihui Zhu  (朱世辉).

Additional information

Tingjian Luo was partially supported by the National Natural Science Foundation of China (11501137) and the Guangdong Basic and Applied Basic Research Foundation (2016A030310258, 2020A1515011019). Shihui Zhu was partially supported by the National Natural Science Foundation of China (11501395, 12071323).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Zheng, S. & Zhu, S. The Existence and Stability of Normalized Solutions for a Bi-Harmonic Nonlinear Schrödinger Equation with Mixed Dispersion. Acta Math Sci 43, 539–563 (2023). https://doi.org/10.1007/s10473-023-0205-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0205-5

Key words

2010 MR Subject Classification

Navigation