Skip to main content
Log in

Two Regularization Methods for Identifying the Source Term Problem on the Time-Fractional Diffusion Equation with a Hyper-Bessel Operator

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator. First, we prove that this inverse problem is ill-posed, and give the conditional stability. Then, we give the optimal error bound for this inverse problem. Next, we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem, and give corresponding error estimates under different regularization parameter selection rules. Finally, we verify the effectiveness of the method through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzler R, Klafter J, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep, 2000, 339: 1–77

    Article  MathSciNet  MATH  Google Scholar 

  2. Metzler R, Klafter J, Boundary value problems for frctional diffusion equations. Phys A, 2000, 278: 107–125

    Article  MathSciNet  Google Scholar 

  3. Agrawal O P, Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam, 2002, 29: 145–155

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao X, Liu H, Determining a fractional Helmholtz system with unknown source and medium parameter. Commun Math Sci, 2019, 17: 1861–1876

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao X, Lin Y H, Liu H, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrodinger operators. Inverse Probl Imag, 2019, 13: 197–210

    Article  MathSciNet  MATH  Google Scholar 

  6. Yuste S B, Acedo L, Lindenberg K, Reaction front in an A + BC reaction-subdiffusion process. Phys Rev E, 2004, 69: 036126

    Article  Google Scholar 

  7. Santamaria F, Wils S, Schutter D E, et al, Anomalous diffusion in purkinje cell dendrites caused by spines. Neuron, 2006, 52: 635–648

    Article  Google Scholar 

  8. Magin R, Feng X, Baleanu D, Solving the fractional order bloch equation. Concept Magn Reson A, 2009, 34A: 16–23

    Article  Google Scholar 

  9. Henry B I, Langlands T A M, Wearne S L, Fractional cable models for spiny neuronal dendrites. Phys Rev Lett, 2008, 100: 128103

    Article  Google Scholar 

  10. Hall M G, Barrick T R, From diffusion-weighted MRI to anomalous diffusion imaging. Magnet Reson Med, 2008, 59: 447–455

    Article  Google Scholar 

  11. Raberto M, Scalas E, Mainardi F, Waiting-times and returns in high-frequency finan-cial data: an empirical study. Phys A, 2002, 314: 749–755

    Article  MATH  Google Scholar 

  12. Scalas E, Gorenflo R, Mainardi F, Fractional calculus and continuous-time finance. Phys A, 2000, 284: 376–384

    Article  MathSciNet  Google Scholar 

  13. Wyss W, The fractional Black-Scholes equation. Fract Calc Appl Anal, 2000, 3: 51–62

    MathSciNet  MATH  Google Scholar 

  14. Arran F, Dumitru B, Classes of operators in fractional calculus: A case study. Math Meth Appl Sci, 2021, 44: 9143–9162

    Article  MathSciNet  MATH  Google Scholar 

  15. Raoul N, Dumitru B, Arran F, Balance equations with generalised memory and the emerging fractional kernels. Nonlinear Dyn, 2021, 104: 4149–4161

    Article  Google Scholar 

  16. Gu Q, Schiff E A, Grebner S, et al, Non-Gaussian Transport Measurements and the Einstein Relation in Amorphous Silicon. Phys Rev Lett, 1996, 76: 3196–3199

    Article  Google Scholar 

  17. Klammler F, Kimmich R, Geometrical restrictions of incoherent transport of water by diffusion in protein of silica fineparticle systems and by flow in a sponge-a study of anomalous properties using an NMR field-gradient technique. Croat Chem Acta, 1992, 65: 455–470

    Google Scholar 

  18. Weber H W, Kimmich R, Anomalous segment diffusion in polymers and NMR relaxation spectroscopy. Macromolecules, 1993, 26: 2597–2606

    Article  Google Scholar 

  19. Klemm A, Muller H P, Kimmich R, NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects. Phys Rev E, 1997, 55: 4413–4422

    Article  Google Scholar 

  20. Porto M, Bunde A, Havlin S, et al, Structural and dynamical properties of the percolation backbone in two and three dimensions. Phys Rev E, 1997, 56: 1667–1675

    Article  Google Scholar 

  21. Weeks E R, Swinney H L, Anomalous diffusion resulting from strongly asymmetric random walks. Phys Rev E, 1998, 57: 4915–4920

    Article  Google Scholar 

  22. Luedtke W D, Landman U, Slip diffusion and Levy fligths of an adsorbed gold nanocluster. Phys Rev Lett, 1999, 82: 3835–3838

    Article  Google Scholar 

  23. Mclean W, Mustapha K, A second-order accurate numerical method for a fractional wave equation. Numer Math, 2006, 105: 481–510

    Article  MathSciNet  MATH  Google Scholar 

  24. Shlesinger M F, West B J, Klafter J, Levy dynamics of enhanced diffusion: Application to turbulence. Phys Rev Lett, 1987, 58: 1100–1103

    Article  MathSciNet  Google Scholar 

  25. Schaufler S, Schleich W P, Yakovlev V P, Scaling and asymptotic laws in subrecoil laser cooling. Europhys Lett, 2007, 39: 383–388

    Article  Google Scholar 

  26. Zumofen G, Klafter J, Spectral random walk of a single molecule. Chem Phys Lett, 1994, 219: 303–309

    Article  Google Scholar 

  27. Bychuk O V, Oshaughnessy B, Anomalous diffusion at liquid surfaces. Phys Rev Lett, 1995, 74: 1795–1798

    Article  Google Scholar 

  28. Young D L, Tsai C C, Murugesan K, Fan C M, Chen C W, Time-dependent fundamental solutions for homogeneous diffusion problems. Eng Anal Bound Elem, 2004, 28: 1463–1473

    Article  MATH  Google Scholar 

  29. Martin V, An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Appl Numer Math, 2005, 52: 401–428

    Article  MathSciNet  MATH  Google Scholar 

  30. Alcouffe R E, Brandt A, Dendy J E, Painter J W, The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM J Sci Comput, 1981, 2: 430–454

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang S, Liu Y, Liu H, Wang C. Numerical Methods for Semilinear Fractional Diffusion Equations with Time Delay. Adv Appl Math Mech. doi:https://doi.org/10.4208/aamm.OA-2020-0387

  32. Can N H, Luc N H, Baleanu D, et al, Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel. Adv Differ Equ, 2020, 2020: 1–18

    Article  MathSciNet  MATH  Google Scholar 

  33. Tuan N H, Zhou Y, Can N H, Identifying inverse source for fractional diffusion equation with Riemann-Liouville derivative. Comput Appl Math, 2020, 39: 75

    Article  MathSciNet  MATH  Google Scholar 

  34. Luchko Y, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract Calc Appl Anal, 2012, 15: 141–160

    Article  MathSciNet  MATH  Google Scholar 

  35. Kemppainen J, Existence and uniqueness of the solution for a time-fractional diffusion equation. Fract Calc Appl Anal, 2011, 14: 411–417

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei T, Zhang Y, The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput Math Appl, 2018, 75: 3632–3648

    Article  MathSciNet  MATH  Google Scholar 

  37. Tuan N H, Long L D, Tatar S, Tikhonov regularization method for a backward problem for the inhomogeneous time-fractional diffusion equation. Appl Anal, 2018, 97: 842–863

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang F, Zhang Y, Li X X, et al, The quasi-boundary value regularization method for identifying the initial value with discrete random value. Bound Value Probl, 2018, 2018: 1–12

    Article  MATH  Google Scholar 

  39. Liu J J, Yamamoto M, A backward problem for the time-fractional diffusion equation. Appl Anal, 2010, 89: 1769–1788

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang F, Ren Y P, Li X X, The quasi-reversibility method for a final value problem of the time-fractional diffusion equation with inhomogeneous source. Math Method Appl Sci, 2018, 41: 1774–1795

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang F, Zhang Y, Liu X, Li X X. The quasi-boundary value method for identifying the intital valuce of the space-time an fractional diffusion equation. Acta Math Sci, 2020, 40B(3): 641–658

    Article  Google Scholar 

  42. Yang F, Fu C L, Li X X, A mollification regualrization method for unknown source in time-fractional diffusion equation. Int J Comput Math, 2014, 91: 1516–1534

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang F, Fu C L, Li X X, The inverse source problem for time fractional diffusion equation: stability analysis and regularization. Inverse Probl Sci En, 2015, 23: 969–996

    Article  MathSciNet  MATH  Google Scholar 

  44. Wei T, Wang J G, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl Numer Math, 2014, 78: 95–111

    Article  MathSciNet  MATH  Google Scholar 

  45. Wei T, Zhang Z Q, Reconstruction of a time-dependent source term ina time-fractional diffusion equation. Eng Anal Bound Elem, 2013, 37: 23–31

    Article  MathSciNet  MATH  Google Scholar 

  46. Tuan N H, Nane E, Inverse source problem for time fractional diffusion with dicrete random noise. Stat Probabil Lett, 2017, 120: 126–134

    Article  MATH  Google Scholar 

  47. Wang X, Guo Y, Zhang D, Liu H, Fourier method for recovering acoustic sources from multi-frequency far-field data. Inverse Probl, 2017, 33: 035001

    Article  MathSciNet  MATH  Google Scholar 

  48. Luc N H, Baleanu D, Agarwal R P, Identifying the source function for time fractional diffusion with nonlocal in time conditions. Comput Appl Math, 2021, 40: 149

    Article  Google Scholar 

  49. Luc N H, Tatar S, Baleanu D, et al. An inverse source problem for pseudo-parabolic equation with Caputo derivative. J Appl Math Comput, 2021: 1–27

  50. Karapinar E, Kumar D, Sakthivel R, et al, Identifying the space source term problem for time-space-fractional diffusion equation. Adv Differ Equ, 2020, 2020: 1–23

    Article  MathSciNet  MATH  Google Scholar 

  51. Ozbilge E, Demir A, Inverse problem for a time-fractional parabolic equation. J Inequal Appl, 2015, 2015: 81

    Article  MathSciNet  MATH  Google Scholar 

  52. Li G S, Zhang D L, Jia X Z, et al, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl, 2013, 29: 065014(36pp)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang F, Liu X, Li X X, et al, Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation. Adv Differ Equ, 2017, 2017: 388–402

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang F, Ren Y P, Li X X, et al, Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation. Bound Value Probl, 2017, 2017: 1–19

    MathSciNet  MATH  Google Scholar 

  55. Wang J G, Xiong X T, Gao X X, Fractional Tikhonov Regularization method for a Time-fractional Backward Heat Equation with a Fractional Laplacian. J Part Diff Eq, 2018, 31: 333–342

    MathSciNet  MATH  Google Scholar 

  56. Xiong X T, Ma X J, A Backward Identifying Problem for an Axis-Symmetric Fractional Diffusion Equation. Math Model Anal, 2017, 22: 311–320

    Article  MathSciNet  MATH  Google Scholar 

  57. Xiong X T, Xue X X, Qian Z, A modified iterative regularization method for ill-posed problems. Appl Numer Math, 2017, 122: 108–128

    Article  MathSciNet  MATH  Google Scholar 

  58. Han Y Z, Xiong X T, Xue X M. A fractional Landweber method for solving backward time-fractional diffusion problem. Comput Math Appl. doi:https://doi.org/10.1016/j.camwa.2019.02.017

  59. Dimovski I, Operational calculus of a class of differential operators. C R Acad Bulg Sci, 1966, 19: 1111–1114

    MathSciNet  Google Scholar 

  60. Garra R, Giusti A, Mainardi F and Pagnini G, Fractional relaxation with time-varying coefficient. Fract Calc Appl Anal, 2014, 17: 424–439

    Article  MathSciNet  MATH  Google Scholar 

  61. Garra R, Orsingher E and Polito F, Fractional diffusion with time-varying coefficients. J Math Phys, 2015, 56: 1–19

    Article  MathSciNet  MATH  Google Scholar 

  62. Tuan N H, Huynh L N, Baleanu D, Can N H, On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Math Method Appl Sci, 2020, 43: 2858–2882

    Article  MathSciNet  MATH  Google Scholar 

  63. Luc N H, Huynh L N, Baleanu D, et al. Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Adv Differ Equ. https://doi.org/10.1186/s13662-020-02712-y

  64. Sakamoto K, Yamamoto M, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl, 2011, 382: 426–447

    Article  MathSciNet  MATH  Google Scholar 

  65. Podlubny I. Fractional differential equations. San Diego: Academic Press, 1999.

    MATH  Google Scholar 

  66. Courant R, Hilbert D, Methods of Mathematical Physics: Partial Differential Equations. Nucl Sci Eng, 1963, 30: 158

    Google Scholar 

  67. Al-Musalhi F, Al-Salti N, Karimov E, Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract Calc Appl Anal, 2018, 21: 200–219

    Article  MathSciNet  MATH  Google Scholar 

  68. Wang J G, Wei T, Zhou Y B, Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. J Comput Appl Math, 2015, 279: 277–292

    Article  MathSciNet  MATH  Google Scholar 

  69. Liu S, Feng L. Optimal error bound and modified kernel method for a space-fractional backward diffusion problem. Adv Differ Equ, 2018, 268

  70. Hochstenbach M E, Reichel L, Fractional Tikhonov regularization for linear discrete ill-posed problems. Bit, 2011, 51: 197–215

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

The project is supported by the National Natural Science Foundation of China (11961044), the Doctor Fund of Lan Zhou University of Technology, and the Natural Science Foundation of Gansu Provice (21JR7RA214).

Electronic Supplementary Material

Supplementary material, approximately 156 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 132 KB.

Supplementary material, approximately 132 KB.

Supplementary material, approximately 132 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 132 MB.

Supplementary material, approximately 132 KB.

Supplementary material, approximately 132 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 156 KB.

Supplementary material, approximately 132 KB.

Supplementary material, approximately 132 KB.

Supplementary material, approximately 132 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Sun, Q. & Li, X. Two Regularization Methods for Identifying the Source Term Problem on the Time-Fractional Diffusion Equation with a Hyper-Bessel Operator. Acta Math Sci 42, 1485–1518 (2022). https://doi.org/10.1007/s10473-022-0412-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0412-5

Key words

2010 MR Subject Classification

Navigation