Skip to main content
Log in

The Exponential of Quasi Block-Toeplitz Matrices

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

The matrix Wiener algebra, \({{\cal W}_N}: = {{\rm{M}}_N}({\cal W})\) of order N > 0, is the matrix algebra formed by N × N matrices whose entries belong to the classical Wiener algebra \({\cal W}\) of functions with absolutely convergent Fourier series. A block-Toeplitz matrix T(a) = [Ai,j]i,j≥0 is a block semi-infinite matrix such that its blocks Ai,j are finite matrices of order N, Ai,j = Ar,s whenever ij = rs and its entries are the coefficients of the Fourier expansion of the generator \(a: \mathbb{T}\rightarrow {{\rm{M}}_N}(\mathbb{C})\). Such a matrix can be regarded as a bounded linear operator acting on the direct sum of N copies of \({L^2}(\mathbb{T})\). We show that exp(T(a)) difieres from T(exp(a)) only in a compact operator with a known bound on its norm. In fact, we prove a slightly more general result: for every entire function f and for every compact operator E, there exists a compact operator F such that f (T (a) + E) = T (f (a)) + F. We call these T (a) + Es matrices, the quasi block-Toeplitz matrices, and we show that via a computation-friendly norm, they form a Banach algebra. Our results generalize and are motivated by some recent results of Dario Andrea Bini, Stefano Massei and Beatrice Meini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker A. Matrix groups: An introduction to Lie group theory. London: Springer-Verlag, 2002

    Book  Google Scholar 

  2. Barbarino G, Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case. Electronic Transactions on Numerical Analysis, 2020, 53: 28–112

    Article  MathSciNet  Google Scholar 

  3. Barbarino G, Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences: theory and applications in the multidimensional case. Electronic Transactions on Numerical Analysis, 2020, 53: 113–216

    Article  MathSciNet  Google Scholar 

  4. Bini D A, Dendievel S, Latouche G, Meini B. Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues. Linear Algebra and its Applications, 2016, 502: 387–419

    Article  MathSciNet  Google Scholar 

  5. Bini D A, Massei S, Meini B. On functions of quasi-Toeplitz matrices (Russian); translated from Matematicheskii Sbornik, 2017, 208(11): 56–74

    Google Scholar 

  6. Bini D A, Massei S, Meini B. Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes. Mathematics of Computation, 2018, 87(314): 2811–2830

    Article  MathSciNet  Google Scholar 

  7. Bini D A, Massei S, Robol L. Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox. Numerical Algorithms, 2019, 81(2): 741–769

    Article  MathSciNet  Google Scholar 

  8. Bini D A, Meini B. On the exponential of semi-infinite quasi Toeplitz matrices. Numerische Mathematik, 2019, 141(2): 319–351

    Article  MathSciNet  Google Scholar 

  9. Bonsall F F, Duncan J. Complete Normed Algebras. New York: Springer-Verlag, 1973

    Book  Google Scholar 

  10. Böttcher A, Grusky S M. Spectral properties of banded Toeplitz matrices. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2005

    Book  Google Scholar 

  11. Böttcher A, Silbermann B. Analysis of Toeplitz operators. Second Edition. Prepared jointly with Alexie Karlovich, Springer Monographs in Mathematics. Berlin: Springer-Verlag, 2006

    MATH  Google Scholar 

  12. Böttcher A, Silbermann B. Introduction to large truncated Toeplitz matrices. Universitext. New York: Springer-Verlag, 1999

    Book  Google Scholar 

  13. Dehghan M. Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition. Journal of Computational and Applied Mathematics, 1999, 106(2): 255–269

    Article  MathSciNet  Google Scholar 

  14. Dudgeon D E, Mersereau R M. Multidimensional Digital Signal Processing. 2nd edition. Prentice-Hall Signal Processing Series, 1995

  15. Ehrhart T, Van der Mee C, Rodman L, Spitkovsky I. Factorization in weighted Wiener matrix algebra on linearly ordered Abelian groups. Integral Equations and Operator Theory, 2007, 58: 65–86

    Article  MathSciNet  Google Scholar 

  16. Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences: the case of matrix functions and an engineering application. The Electronic Journal of Linear Algebra, 2019, 35: 204–222

    Article  MathSciNet  Google Scholar 

  17. Garoni C, Serra-Capizzano S. Generalized Locally Toeplitz Sequences: Theory and Applications. Vol I. Cham: Springer, 2017

    Book  Google Scholar 

  18. Garoni C, Serra-Capizzano S. Generalized Locally Toeplitz Sequences: Theory and Applications. Vol II. Cham: Springer, 2018

    Book  Google Scholar 

  19. Gutiérrez-Gutiérrez J, Crespo P M, Böttcher A. Functions of the banded Hermitian block Toeplitz matrices in signal processing. Linear Algebra and its Applications, 2007, 422(2/3): 788–807

    Article  MathSciNet  Google Scholar 

  20. Grenander U, Szegö G. Toeplitz forms and their applications. New York: Chelsea Publishing Co, 1984

    MATH  Google Scholar 

  21. Henrici P. Applied and Computational Complex Analysis. Vol 1. New York: John Wiley & Sons, 1974

    MATH  Google Scholar 

  22. Higham N J. Function of matrices: theory and computational. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2008

    Book  Google Scholar 

  23. Horn R A, Johnson C R. Matrix analysis. Cambridge: Cambridge University Press, 2013

    MATH  Google Scholar 

  24. Jeuris B, Vandebril R. The Kaähler mean of block-Toeplitz matrices with Toeplitz structured blocks. SIAM Journal on Matrix Analysis and Applications, 2016, 37(3): 1151–1175

    Article  MathSciNet  Google Scholar 

  25. Khan M A, Timotin D. Algebras of block Toeplitz matrices with commuting entries. Linear and Multilinear Algebra, 2019. https://doi.org/10.1080/03081087.2019.1693955

  26. Kreyszig E. Introductory functional analysis with applications. New York: John Wiley & Sons, Inc, 1989

    MATH  Google Scholar 

  27. Lee S T, Liu X, Sun H-W. Fast exponential time integration scheme for option pricing with jumps. Numerical Linear Algebra with Applications, 2012, 19(1): 87–101

    Article  MathSciNet  Google Scholar 

  28. Lee S T, Pang H-K, Sun H-W. Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM Journal on Scientific Computing, 2010, 32(2): 774–792

    Article  MathSciNet  Google Scholar 

  29. Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 2003, 45(1): 3–49

    Article  MathSciNet  Google Scholar 

  30. Nielsen F, Bhatia R. Matrix information geometry. Heidelberg: Springer, 2013

    Book  Google Scholar 

  31. Rudin W. Functional Analysis. Second Edition. New York: McGraw-Hill, Inc, 1991

    MATH  Google Scholar 

  32. Rudin W. Principles of Mathematical Analysis. Third Edition. New York: McGraw-Hill Book Co, 1976

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Ahmadi Kakavandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolourchian, E., Kakavandi, B.A. The Exponential of Quasi Block-Toeplitz Matrices. Acta Math Sci 42, 1018–1034 (2022). https://doi.org/10.1007/s10473-022-0312-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0312-8

Key words

2010 MR Subject Classification

Navigation