Skip to main content
Log in

On the exponential of semi-infinite quasi-Toeplitz matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Let \(a(z)=\sum _{i\in {\mathbb {Z}}}a_iz^i\) be a complex valued function defined for \(|z|=1\), such that \(\sum _{i\in {\mathbb {Z}}}|a_i|<\infty \); define \(T(a)=(t_{i,j})_{i,j\in {\mathbb {Z}}^+}, t_{i,j}=a_{j-i}\) for \(i,j\in {\mathbb {Z}}^+\), the semi-infinite Toeplitz matrix associated with the symbol a(z); let \(E=(e_{i,j})_{i,j\in {\mathbb {Z}}^+}\) be a compact operator in \(\ell ^p\), with \(1\le p\le \infty .\) A semi-infinite matrix of the kind \(A=T(a)+E\) is said quasi-Toeplitz (QT). The problem of the computation of \(\exp (A)\) or \(\exp (A)v\), with A quasi-Toeplitz and v a vector, arises in many applications. We prove that the exponential of a QT-matrix A is QT, that is, \(\exp (A) = T(\exp (a))+F\) where F is a compact operator in \(\ell ^p\). This property allows the design of an algorithm for computing \(\exp (A)\) and \(\exp (A)v\) up to any precision. The case of families of \(n\times n\) matrices obtained by truncating infinite QT-matrices to finite size is also considered. Numerical experiments show the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011). https://doi.org/10.1137/100788860

    Article  MathSciNet  MATH  Google Scholar 

  2. Bini, D., Dendievel, S., Latouche, G., Meini, B.: Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues. Linear Algebra Appl. 502, 387–419 (2016). https://doi.org/10.1016/j.laa.2015.03.035

    Article  MathSciNet  MATH  Google Scholar 

  3. Bini, D.A., Massei, S., Meini, B.: On functions of quasi-Toeplitz matrices. Mat. Sb. 208(11), 56–74 (2017). https://doi.org/10.4213/sm8864

    Article  MathSciNet  MATH  Google Scholar 

  4. Bini, D.A., Massei, S., Meini, B.: Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes. Math. Comput. 87(314), 2811–2830 (2018). https://doi.org/10.1090/mcom/3301

    Article  MathSciNet  MATH  Google Scholar 

  5. Bini, D.A., Massei, S., Robol, L.: Quasi-Toeplitz matrix arithmetic: a Matlab toolbox. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0571-6

  6. Böttcher, A., Grudsky, S.M.: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Birkhäuser Verlag, Basel (2000). https://doi.org/10.1007/978-3-0348-8395-5

    Book  MATH  Google Scholar 

  7. Böttcher, A., Grusky, S.M.: Spectral Properties of Band Toeplitz Matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005)

    Book  Google Scholar 

  8. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Dendievel, S., Latouche, G.: Approximations for time-dependent distributions in Markovian fluid models. Methodol. Comput. Appl. Probab. 19, 285–309 (2016). https://doi.org/10.1007/s11009-016-9480-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  11. Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.N.: \({\mathscr {H}}\)-matrix approximation for the operator exponential with applications. Numer. Math. 92(1), 83–111 (2002). https://doi.org/10.1007/s002110100360

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43(5), 2144–2171 (2005). https://doi.org/10.1137/040611045

    Article  MathSciNet  MATH  Google Scholar 

  13. Grimm, V.: Resolvent Krylov subspace approximation to operator functions. BIT 52(3), 639–659 (2012). https://doi.org/10.1007/s10543-011-0367-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1974)

    MATH  Google Scholar 

  16. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Book  MATH  Google Scholar 

  17. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010). https://doi.org/10.1017/S0962492910000048

    Article  MathSciNet  MATH  Google Scholar 

  18. Iserles, A.: How large is the exponential of a banded matrix? Dedicated to John Butcher. New Zealand J. Math. 29(2), 177–192 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Kressner, D., Luce, R.: Fast computation of the matrix exponential for a Toeplitz matrix. SIAM J. Matrix Anal. Appl. 39(1), 23–47 (2018). https://doi.org/10.1137/16M1083633

    Article  MathSciNet  MATH  Google Scholar 

  20. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley Classics Library. Wiley, New York (1989)

    MATH  Google Scholar 

  21. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  22. Lee, S.T., Pang, H.K., Sun, H.W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32(2), 774–792 (2010). https://doi.org/10.1137/090758064

    Article  MathSciNet  MATH  Google Scholar 

  23. Motyer, A.J., Taylor, P.G.: Decay rates for quasi-birth-and-death processes with countably many phases and tridiagonal block generators. Adv. Appl. Probab. 38, 522–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Courier Corporation, North Chelmsford (1981)

    MATH  Google Scholar 

  25. Paige, C.C.: Bidiagonalization of matrices and solutions of the linear equations. SIAM J. Numer. Anal. 11, 197–209 (1974). https://doi.org/10.1137/0711019

    Article  MathSciNet  MATH  Google Scholar 

  26. Pang, H.K., Sun, H.W.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18(3), 603–614 (2011). https://doi.org/10.1002/nla.747

    Article  MathSciNet  MATH  Google Scholar 

  27. Sakuma, Y., Miyazawa, M.: On the effect of finite buffer truncation in a two-node Jackson network. Stoch. Models 12, 143–164 (2005)

    MATH  Google Scholar 

  28. Sericola, B.: Markov Chains. Theory, Algorithms and Applications. Applied Stochastic Methods Series. ISTE, London; Wiley, Hoboken (2013). https://doi.org/10.1002/9781118731543

  29. Shao, M.: On the finite section method for computing exponentials of doubly-infinite skew-Hermitian matrices. Linear Algebra Appl. 451, 65–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Takahashi, Y., Fujimoto, K., Makimoto, N.: Geometric decay of the steady-state probabilities in a Quasi-Birth-Death process with a countable number of phases. Stoch. Models 14, 368–391 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014). https://doi.org/10.1137/130932132

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, G., Feng, T.T., Wei, Y.: An inexact shift-and-invert Arnoldi algorithm for Toeplitz matrix exponential. Numer. Linear Algebra Appl. 22(4), 777–792 (2015). https://doi.org/10.1002/nla.1992

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Robert Luce for providing the software for computing the matrix exponential of a finite Toeplitz matrix based on the displacement rank and the anonymous referees who provided useful suggestions and remarks which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario A. Bini.

Additional information

The research was carried out with the support of GNCS of INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bini, D.A., Meini, B. On the exponential of semi-infinite quasi-Toeplitz matrices. Numer. Math. 141, 319–351 (2019). https://doi.org/10.1007/s00211-018-1006-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-1006-y

Mathematics Subject Classification

Navigation