Skip to main content
Log in

A Block-Centered Upwind Approximation of the Semiconductor Device Problem on a Dynamically Changing Mesh

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initial-boundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously. The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank R E, Coughran W M, Fichtner W, Grosse E H, Rose D J, Smith R K. Transient simulation of silicon devices and circuits. IEEE Transactions on Computer-Aided Design, 1985, 4(4): 436–451

    Article  Google Scholar 

  2. Jerome J W. Mathematical Theory and Approximation of Semiconductor Models. Philadelphia: SIAM, 1994

    Google Scholar 

  3. Lou Y. On basic senmiconductor equation with heat conduction. J Partial Diff Eqs, 1995, 8(1): 43–54

    MATH  Google Scholar 

  4. Yuan Y R. Finite difference method and analysis for three-dimensional semiconductor device of heat conduction. Science in China, Ser A, 1996, 39(11): 1140–1151

    MathSciNet  MATH  Google Scholar 

  5. Shi M. Physics of Modern Semiconductor Device. Beijing: Science Press, 2002

    Google Scholar 

  6. He Y, Wei T L. Computer Simulation Method for Semiconductor Device. Beijing: Scicence Press, 1989

    Google Scholar 

  7. Yuan Y R. Recent progress in numerical methods for semiconductor devices. Chinese J Computational Physics, 2009, 26(3): 317–324

    Google Scholar 

  8. Yuan Y R. Theory and application of reservoir numerical simulation (Chapter 7. Numerical Method for Semiconductor Device Dectector). Beijing: Science Press, 2013

    Google Scholar 

  9. Gummel H K. A self-consistent iterative scheme for one-dimensional steady-state transistor calculation. IEEE Trans: Electron Device, 1964, 11(10): 455–465

    Article  Google Scholar 

  10. Douglas Jr J, Yuan Y R. Finite difference methods for transient behavior of a semiconductor device. Math Appl Comp, 1987, 6(1): 25–37

    MathSciNet  MATH  Google Scholar 

  11. Yuan Y R, Ding L Y, Yang H. A new method and theoretical analysis of numerical analog of semiconductor. Chinese Science Bulletin, 1982, 27(7): 790–795

    MathSciNet  Google Scholar 

  12. Yuan Y R. Finite element method and analysis of numerical simulation of semiconductor device. Acta Math Sci, 1993, 13(3): 241–251

    Article  MathSciNet  Google Scholar 

  13. Yuan Y R. The approximation of the electronic potential by a mixed method in the simulation of semiconductor. J Systems Sci Math Sci, 1991, 11(2): 117–120

    MathSciNet  MATH  Google Scholar 

  14. Yuan Y R. Characteristics method with mixed finite element for transient behavior of semiconductor device. Chin Sci Bull, 1991, 36(17): 1356–1357

    Article  Google Scholar 

  15. Cai Z. On the finite volume element method. Numer Math, 1991, 58(1): 713–735

    Article  MathSciNet  MATH  Google Scholar 

  16. Li R H, Chen Z Y. Generalized Difference of Differential Equations. Changchun: Jilin University Press, 1994

    Google Scholar 

  17. Raviart P A, Thomas J M. A mixed finite element method for second order elliptic problems//Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, 606. Springer, 1977

  18. Douglas Jr J, Ewing R E, Wheeler M F. Approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal Numer, 1983, 17(1): 17–33

    Article  MathSciNet  MATH  Google Scholar 

  19. Douglas Jr J, Ewing R E, Wheeler M F. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal Numer, 1983, 17(3): 249–265

    Article  MathSciNet  MATH  Google Scholar 

  20. Russell T F. Rigorous block-centered discritization on inregular grids: Improved simulation of complex reservoir systems. Project Report, Research Comporation, Tulsa, 1995

    Google Scholar 

  21. Weiser A, Wheeler M F. On convergence of block-centered finite difference for elliptic problems. SIAM J Numer Anal, 1988, 25(2): 351–375

    Article  MathSciNet  MATH  Google Scholar 

  22. Jones J E. A Mixed Volume Method for Accurate Computation of Fluid Velocities in Porous Media [D]. Denver: University of Colorado, 1995

    Google Scholar 

  23. Cai Z, Jones J E, Mccormilk S F, Russell T F. Control-volume mixed finite element methods. Comput Geosci, 1997, 1(3): 289–315

    Article  MathSciNet  Google Scholar 

  24. Chou S H, Kawk D Y, Vassileviki P. Mixed volume methods on rectangular grids for elliptic problem. SIAM J Numer Anal, 2000, 37(3): 758–771

    Article  MathSciNet  Google Scholar 

  25. Chou S H, Kawk D Y, Vassileviki P. Mixed volume methods for elliptic problems on triangular grids. SIAM J Numer Anal, 1998, 35(5): 1850–1861

    Article  MathSciNet  Google Scholar 

  26. Chou S H, Vassileviki P. A general mixed covolume framework for constructing conservative schemes for elliptic problems. Math Comp, 1999, 68(227): 991–1011

    Article  MathSciNet  MATH  Google Scholar 

  27. Rui H X, Pan H. A block-centered finite difference method for the Darcy-Forchheimer Model. SIAM J Numer Anal, 2012, 50(5): 2612–2631

    Article  MathSciNet  MATH  Google Scholar 

  28. Pan H, Rui H X. Mixed element method for two-dimensional Darcy-Forchheimer model. J Scientific Computing, 2012, 52(3): 563–587

    Article  MathSciNet  MATH  Google Scholar 

  29. Yuan Y R, Liu Y X, Li C F, Sun T J, Ma L Q. Analysis on block-centered finite differences of numerical simulation of semiconductor detector. Appl Math Comput, 2016, 279: 1–15

    MathSciNet  MATH  Google Scholar 

  30. Yuan Y R, Yang Q, Li C F, Sun T J. Numerical method of mixed finite volume-modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems. Acta Math Sci, 2017, 37B(1): 259–279

    Article  MathSciNet  MATH  Google Scholar 

  31. Dawson C N, Kirby R. Solution of parabolic equations by backward Euler-mixed finite element method on a dynamically changing mesh. SIAM J Numer Anal, 2000, 37(2): 423–442

    Article  MathSciNet  MATH  Google Scholar 

  32. Arbogast T, Wheeler M F, Yotov I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J Numer Anal, 1997, 34(2): 828–852

    Article  MathSciNet  MATH  Google Scholar 

  33. Arbogast T, Dawson C N, Keenan P T, Wheeler M F, Yotov I. Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J Sci, Comput, 1998, 19(2): 404–425

    Article  MathSciNet  MATH  Google Scholar 

  34. Nitsche J. Lineare spline-funktionen und die methoden von Ritz für elliptische randwertprobleme. Arch Rational Mech Anal, 1970, 36(5): 348–355

    Article  MathSciNet  MATH  Google Scholar 

  35. Jiang L S, Pang Z Y. Finite Element Method and Its Theory. Beijing: People’s Education Press, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Li.

Additional information

This research was supported the Natural Science Foundation of Shandong Province (ZR2016AM08), Natural Science Foundation of Hunan Province (2018JJ2028), National Natural Science Foundation of China (11871312).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Li, C. & Song, H. A Block-Centered Upwind Approximation of the Semiconductor Device Problem on a Dynamically Changing Mesh. Acta Math Sci 40, 1405–1428 (2020). https://doi.org/10.1007/s10473-020-0514-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0514-x

Key words

2010 MR Subject Classification

Navigation