Acta Mathematica Scientia

, Volume 39, Issue 4, pp 927–944 | Cite as

A Study of a Fully Coupled Two-Parameter System of Sequential Fractional Integro-Differential Equations with Nonlocal Integro-Multipoint Boundary Conditions

  • Ahmed Alsaedi
  • Bashir Ahmad
  • Shorog Aljoudi
  • Sotiris K. NtouyasEmail author


In this article, we discuss the existence and uniqueness of solutions for a coupled two-parameter system of sequential fractional integro-differential equations supplemented with nonlocal integro-multipoint boundary conditions. The standard tools of the fixed-point theory are employed to obtain the main results. We emphasize that our results are not only new in the given configuration, but also correspond to several new special cases for specific values of the parameters involved in the problem at hand.

Key words

Coupled system sequential fractional derivative multi-point integral boundary conditions existence 

2010 MR Subject Classification

34A08 34B15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Heymans N, Bauwens J C. Fractal Theological models and fractional differential equations for viscoelastic behavior. Rheologica Acta, 1994, 33: 210–219CrossRefGoogle Scholar
  2. [2]
    Glockle W, Nonnenmacher T. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 1995, 68: 46–53CrossRefGoogle Scholar
  3. [3]
    Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 2000. 339: 1–77MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Arena P, Fortuna L, Porto D. Chaotic behavior in noninteger-order cellular neural networks. Physical Review E, 2000, 61: 7761–7781CrossRefGoogle Scholar
  5. [5]
    Schumer R, Benson D, Meerschaertb M, Wheatcraft S. Eulerian derivative of the fractional advection-dispersion equation. J Contaminant, 2001, 48: 69–88CrossRefGoogle Scholar
  6. [6]
    Picozzi S, West B J. Fractional Langevin model of memory in financial markets, Physics Review E, 2002, 66: 46–118MathSciNetGoogle Scholar
  7. [7]
    Henry B, Wearne S. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J Appl Math, 2002, 62: 870–887MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Mendez U. Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J Appl Phys Sci, 2005, 98: 923–935CrossRefGoogle Scholar
  9. [9]
    Hilfer R. Anomalous transport: Foundations and applications//Klages R, Radons G, Sokolov I M. Anomalous Transport: Foundations and Applications. Wiley-VCH, 2008: 17–74CrossRefGoogle Scholar
  10. [10]
    Lundstrom B, Higgs M, Spain W, Fairhall A. Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience, 2008, 11: 1335–1342CrossRefGoogle Scholar
  11. [11]
    Matsuzaki T, Nakagawa M. A chaos neuron model with fractional differential equation. J Phys Soc Jpn, 2003, 72: 2678–2684CrossRefGoogle Scholar
  12. [12]
    Magin R L. Fractional Calculus in Bioengineering. Begell House Publishers, 2006Google Scholar
  13. [13]
    Herrmann R. Fractional Calculus: An Introduction for Physicists. Singapore: World Scientific, 2011CrossRefzbMATHGoogle Scholar
  14. [14]
    Wang J R, Zhou Y, Feckan M. On the nonlocal Cauchy problem for semilinear fractional order evolution equations. Cent Eur J Math, 2014, 12: 911–922MathSciNetzbMATHGoogle Scholar
  15. [15]
    Henderson J, Kosmatov N. Eigenvalue comparison for fractional boundary value problems with the Caputo derivative. Fract Calc Appl Anal, 2014, 17: 872–880MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Castaing C, Truong L X, Phung P D. On a fractional differential inclusion with integral boundary condition in Banach spaces. J Nonlinear Convex Anal, 2016, 17: 441–471MathSciNetzbMATHGoogle Scholar
  17. [17]
    Ahmad B, Ntouyas S K, Tariboon J. A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Acta Mathematica Scientia, 2016, 36B: 1631–1640MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Ge Z M, Ou C Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals, 2008, 35: 705–717CrossRefGoogle Scholar
  19. [19]
    Zhang F, Chen G, Li C, Kurths J. Chaos synchronization in fractional differential systems. Phil Trans R Soc, 2013, 371A: 20120155MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Ostoja-Starzewski M. Towards thermoelasticity of fractal media. J Thermal Stresses, 2007, 30: 889–896CrossRefzbMATHGoogle Scholar
  21. [21]
    Povstenko Y Z. Fractional Thermoelasticity. New York: Springer, 2015CrossRefzbMATHGoogle Scholar
  22. [22]
    Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Amsterdam: Elsevier Science BV, 2006Google Scholar
  23. [23]
    Diethelm K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Heidelberg: Springer-Verlag, 2010zbMATHGoogle Scholar
  24. [24]
    Ding X L, Nieto J J. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions. Commun Nonlinear Sci Numer Simul, 2017, 52: 165–176MathSciNetCrossRefGoogle Scholar
  25. [25]
    Ahmad B, Nieto J J, Alsaedi A, Aqlan M H. A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr J Math, 2017, 14: 227MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Ahmad B, Ntouyas S K. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract Calc Appl Anal, 2014, 17(2): 348–360MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Aljoudi S, Ahmad B, Nieto J J, Alsaedi A. On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions. Filomat, 2017, 31: 6041–6049MathSciNetCrossRefGoogle Scholar
  28. [28]
    Khalaf S L, Khudair A R. Particular solution of linear sequential fractional differential equation with constant coefficients by inverse fractional differential operators. Differ Equ Dyn Syst, 2017, 25: 373–383MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Aljoudi S, Ahmad B, Nieto J J, Alsaedi A. A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions. Chaos Solitons & Fractals, 2016, 91: 39–46MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Tariboon J, Ntouyas S K, Sudsutad W. Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions. J Nonlinear Sci Appl, 2016, 9: 295–308MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Ahmad B, Alsaedi A, Aljoudi S, Ntouyas S K. On a coupled system of sequential fractional differential equations with variable coeffcients and coupled integral boundary conditions. Bull Math Soc Sci Math Roumanie (NS), 2017, 60(108): 3–18zbMATHGoogle Scholar
  32. [32]
    Ahmad B, Nieto J J. Boundary value problems for a class of sequential integrodifferential equations of fractional order. J Funct Spaces Appl, 2013, Art ID 149659Google Scholar
  33. [33]
    Granas A, Dugundji J. Fixed Point Theory. New York: Springer-Verlag, 2003CrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  • Ahmed Alsaedi
    • 1
  • Bashir Ahmad
    • 1
  • Shorog Aljoudi
    • 1
  • Sotiris K. Ntouyas
    • 1
    • 2
    Email author
  1. 1.Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of MathematicsUniversity of IoanninaIoanninaGreece

Personalised recommendations