The complexity of priced control in elections

Open Access
Article

Abstract

We study the complexity of priced control in elections. Naturally, if a given control type is NP-hard for a given voting system ɛ then its priced variant is NP-hard for this rule as well. It is, however, interesting what effect introducing prices has on the complexity of those control problems that without prices are tractable. We show that for four prominent voting rules (plurality, approval, Condorcet, and Copeland) introducing prices does not increase the complexity of control by adding/deleting candidates/voters. However, we do show an example of a scoring rule for which such an effect takes place.

Keywords

Social choice Voting Control Prices 

Mathematics Subject Classifications (2010)

68Q17 91B14 Control Prices 

References

  1. 1.
    Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who won the election. Soc. Choice Welf. 6(2), 157–165 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election Math. Comput. Model. 16(8/9), 27–40 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baumeister, D., Erdélyi, G., Erdélyi, O., Rothe, J.: Complexity of manipulation and bribery in judgment aggregation for uniform premise-based quota rules. Math. Soc. Sci. 76, 19–30 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baumeister, D., Faliszewski, P., Lang, J., Rothe, J.: Campaigns for lazy voters: Truncated ballots. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 577–584. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  5. 5.
    Baumeister, D., Roos, M., Rothe, J., Schend, L., Xia, L.: The possible winner problem with uncertain weights. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 133–138. IOS Press (2012)Google Scholar
  6. 6.
    Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related digraph problems. Theor. Comput. Sci. 410(52), 43–53 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brams, S., Fishburn, P.: Voting procedures. In: Arrow, K., Sen, A., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp. 173–236. Elsevier (2002)Google Scholar
  8. 8.
    Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.: Bypassing combinatorial protections: Polynomial-time algorithms for single-peaked electorates. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 715–722. AAAI Press (2010)Google Scholar
  9. 9.
    Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., Niedermeier, R.: Prices matter for the parameterized complexity of shift bribery. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 1398–1404. AAAI Press (2014)Google Scholar
  10. 10.
    Bredereck, R., Faliszewski, P., Niedermeier, R., Talmon, N.: Large-scale election campaigns: Combinatorial shift bribery. In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems, pp. 67–75 (2015)Google Scholar
  11. 11.
    Bulteau, L., Chen, J., Faliszewski, P., Niedermeier, R., Talmon, N.: Combinatorial voter control in elections. Theor. Comput. Sci. 589, 99–120 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, J., Faliszewski, P., Niedermeier, R., Talmon, N.: Elections with few voters: Candidate control can be easy. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 2045–2051 (2015)Google Scholar
  13. 13.
    Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., Xia, L.: New candidates welcome! possible winners with respect to the addition of new candidates. Math. Soc. Sci. 64(1), 74–88 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dorn, B., Schlotter, I.: Multivariate complexity analysis of swap bribery. Algorithmica 64(1), 126–151 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Elkind, E., Faliszewski, P.: Approximation algorithms for campaign management. In: Proceedings of the 6th International Workshop On Internet And Network Economics, pp. 473–482. Springer-Verlag Lecture Notes in Computer Science #6484 (2010)Google Scholar
  16. 16.
    Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Proceedings of the 2nd International Symposium on Algorithmic Game Theory, pp. 299–310. Springer-Verlag Lecture Notes in Computer Science #5814 (2009)Google Scholar
  17. 17.
    Elkind, E., Faliszewski, P., Slinko, A.: Cloning in elections: finding the possible winners. J. Artif. Intell. Res. 42, 529–573 (2011)MathSciNetMATHGoogle Scholar
  18. 18.
    Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: A theoretical analysis. J. Comput. Syst. Sci. 81(4), 632–660 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Faliszewski, P.: Nonuniform bribery (short paper). In: Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems, pp. 1569–1572. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  20. 20.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in elections J. Artif. Intell. Res. 35, 485–532 (2009)MathSciNetMATHGoogle Scholar
  21. 21.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010)CrossRefGoogle Scholar
  22. 22.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Multimode control attacks on elections. J. Artif. Intell. Res. 40, 305–351 (2011)MathSciNetMATHGoogle Scholar
  23. 23.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Weighted electoral control. J. Artif. Intell. Res. 52, 507–542 (2015)MathSciNetMATHGoogle Scholar
  24. 24.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting computationally resist bribery and constructive control. J. Artif. Intell. Res. 35, 275–341 (2009)MathSciNetMATHGoogle Scholar
  25. 25.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that never was: Societies with single-peaked preferences are more open to manipulation and control. Inf. Comput. 209(2), 89–107 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Faliszewski, P., Procaccia, A.: AI’s war on manipulation: Are we winning AI Mag. 31(4), 52–64 (2010)Google Scholar
  27. 27.
    Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Comput. C-31(1), 48–59 (1982)CrossRefGoogle Scholar
  28. 28.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)Google Scholar
  29. 29.
    Gibbard, A.: Manipulation of voting schemes. Econometrica 41(4), 587–601 (1973)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Hemaspaandra, E., Hemaspaandra, L., Menton, C.: Search versus decision for election manipulation problems. In: Proceedings of the 30th Annual Symposium on Theoretical Aspects of Computer Science, pp. 377–388. Leibniz-Zentrum für Informatik (2013)Google Scholar
  31. 31.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: The complexity of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Theor. Comput. Sci. 349(3), 382–391 (2005)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Kuta, M., Kitowski, J.: Benchmarking high performance architectures with natural language processing algorithms. Comput. Sci. 12, 19–31 (2011)Google Scholar
  35. 35.
    Lamport, L.: Paxos made simple. SIGACT News 32(4), 51–58 (2001)Google Scholar
  36. 36.
    Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized computational complexity of control problems in voting systems. Theor. Comput. Sci. 410(27–29), 2746–2753 (2009)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Liu, H., Zhu, D.: Parameterized complexity of control problems in maximin election. Inf. Process. Lett. 110(10), 383–388 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Magiera, K., Faliszewski, P.: How hard is control in single-crossing elections?. In: Proceedings of the 21st European Conference on Artificial Intelligence, pp. 579–584. IOS Press (2014)Google Scholar
  39. 39.
    Magrino, T., Rivest, R., Shen, E., Wagner, D.: Computing the margin of victory in IRV elections. Presented at 2011 Electronic Voting Technology Workshop/Workshop on Trushworthy Elections (2011)Google Scholar
  40. 40.
    Mattei, N., Goldsmith, J., Klapper, A.: On the complexity of bribery and manipulation in tournaments with uncertain information. In: Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference, pp. 549–554 (2012)Google Scholar
  41. 41.
    Mattei, N., Pini, M., Rossi, F., Venable, K.: Bribery in voting over combinatorial domains is easy. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 1407–1408. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  42. 42.
    Meir, R., Procaccia, A., Rosenschein, J., Zohar, A.: The complexity of strategic behavior in multi-winner elections. J. Artif. Intell. Res. 33, 149–178 (2008)MathSciNetMATHGoogle Scholar
  43. 43.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  44. 44.
    Parkes, D., Xia, L.: A complexity-of-strategic-behavior comparison between Schulze’s rule and ranked pairs. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1429–1435. AAAI Press (2012)Google Scholar
  45. 45.
    Rey, A., Rothe, J.: Bribery in path-disruption games. In: Proceedings of the 2nd International Conference on Algorithmic Decision Theory, pp. 247–261. Springer-Verlag Lecture Notes in Computer Science #6992 (2011)Google Scholar
  46. 46.
    Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for Young elections. Theory Comput. Syst. 36(4), 375–386 (2003)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Satterthwaite, M.: Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10(2), 187–217 (1975)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Wojtas, K., Faliszewski, P.: Possible winners in noisy elections. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1499–1505 (2012)Google Scholar
  49. 49.
    Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 982–999. ACM Press (2012)Google Scholar
  50. 50.
    Xia, L.: Fixed-parameter tractability of integer generalized scoring rules. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, pp. 1599–1600 (2014)Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations