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Abstract We study the complexity of priced control in elections. Naturally, if a given con-
trol type is NP-hard for a given voting system & then its priced variant is NP-hard for this
rule as well. It is, however, interesting what effect introducing prices has on the complexity
of those control problems that without prices are tractable. We show that for four promi-
nent voting rules (plurality, approval, Condorcet, and Copeland) introducing prices does not
increase the complexity of control by adding/deleting candidates/voters. However, we do
show an example of a scoring rule for which such an effect takes place.
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1 Introduction

We consider the complexity of election control [2, 32] for the case where different control
actions can have possibly different prices. Our main motivation comes from the fact that
different types of control actions allowed in multimode control reflect a wide range of ways
in which elections can be influenced through political campaigns, and prices reflect the fact
that the cost of different actions varies. Our main finding is that introducing prices in control
problems, typically, does not change their complexity. Specifically, we show that for sev-
eral well-known voting rules (plurality, approval, Condorcet, and Copeland) the complexity
of control problems with prices remains the same as for the unpriced variants (however,
showing this requires more care). On the other hand, we show that for scoring protocols
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destructive voter control is often easy, yet there is a scoring protocol for which destructive
priced voter control is NP-hard. Our results stand in sharp contrast to those for control in
weighted elections [23]. On one hand, allowing weighted votes often increases the com-
plexity of control problems, and on the other, destructive weighted voter control for scoring
protocols is always easy.

The individuals participating in an election, to whom we will refer as voters, might be,
for example, members of parliaments, a jury, all adult citizens of a country, or even elements
of distributed software systems [27, 35], or algorithms in various areas of computer science
(we point to an application of voting related to natural language processing [34]). Voters
select among possible alternatives, i.e., candidates taking part in the election. In the most
frequently used, ordinal, model, a vote is a linear order over all the candidates, ranking them
from the most to the least desirable one. However, under approval voting voters simply
indicate which candidates they do and do not approve of. Once all the votes are gathered, we
use a voting rule to determine the winner(s). There are many different voting rules to choose
from, each with its own advantages and faults. For example, under the plurality rule each
candidate receives a point from each voter that ranks him or her first, and the candidate(s)
with most points win. Under Copeland elections, for each two candidates we form a head-to-
head contest (that is, we check which of the two is preferred by a majority of the voters), the
winner receives a point, and whoever has most points in the end is the winner. We formally
introduce all the voting systems studied in this paper in Section 2. We focus on four rules,
plurality, approval, Condorcet, and Copeland, that are widely studied from the point of view
of the complexity of control. This makes it easy to compare our results with other ones in
the literature.

Since elections are used to decide on matters of great importance among individuals
with conflicting preferences, it is no surprise that many agents are interested in influencing
their outcomes. There are two basic goals that such agents may be willing to attain: either
they try to ensure that a preferred candidate is the winner of the election (a constructive
action) or they try to preclude a despised candidate from achieving a victory (a destructive
action). Further, there are many ways in which voters, candidates, and election organizers
can influence elections results. These ways range from strategic voting [29, 47] (see the
survey of Faliszewski and Procaccia [26] for an Al-focused overview), through bribery [20],
to running political campaigns [15, 16] and performing control attacks [2, 32]. We focus on
the latter two and we merge the ideas behind election control and campaign management.

By election control we mean actions that change the structure of an election. The most
typical examples of control actions are adding/deleting candidates or voters. For example,
it is easy to imagine settings where supporters of a particular candidate run a campaign to
promote participation in an election, targeting the voters who are likely to vote for their can-
didate. Similarly, one can imagine actions discouraging opponent voters from casting their
votes. A more difficult, yet possible, way of controlling an election is to fund a campaign
of an additional candidate that would not otherwise take part in the election. Doing so could
be motivated by a hope that such a candidate would steal votes away from our opponents.

The complexity of election control was first studied by Bartholdi, Tovey, and Trick [2]
(we discuss related work in more detail in Section 1.1). However, they assumed that adding
or deleting each candidate or voter has the same unit cost, which is not reasonable in the
context of campaign management. Indeed, it might be very expensive to convince some
candidate to join the race (e.g., because one would have to fund him or her completely),
whereas convincing some other one might be quite cheap (e.g., because he or she already
wants to join the election and is mostly prepared). Similarly, convincing some voters to vote
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may be more expensive than convincing others (e.g., because for some we would have to
pay for their transportation to the voting stations, whereas for others we would simply have
to drop some leaflets in their neighborhood). Thus, in this paper we extend the model of
control introduced by Bartholdi, Tovey, and Trick by allowing that different control actions
have different prices. To simplify and shorten many of our proofs, we apply the multimode
control framework of Faliszewski, Hemaspaandra, and Hemaspaandra [22].

1.1 Related work

Computational study of election control was initiated by Bartholdi, Tovey, and Trick [2],
who defined the problems of constructive election control by adding/deleting/partitioning
candidates or voters for plurality and Condorcet elections. Later Hemaspaandra, Hemas-
paandra, and Rothe [32] extended their work by considering destructive variants of these
problems, and by also studying the approval voting rule. Since these two papers, many
researchers studied the complexity of control problems for various voting rules and in vari-
ous other models. For example, Faliszewski et al. [24] considered the Copeland rule, Erdélyi
et al. [18] studied Bucklin and fallback rules, and Parkes and Xia [44] studied the Schulze
rule. This list, of course, is not exhaustive and is meant to present just a few examples (the
reader may wish to consult the survey of Faliszewski, Hemaspaandra and Hemaspaandra
for some more details [21]).

In addition to studying election control for different voting rules, researchers extended
the standard model of election control in many different directions. For example, Meir et
al. [42] studied election control in multiwinner voting and introduced a model that gen-
eralizes the idea of constructive and destructive control. Faliszewski, Hemaspaandra, and
Hemaspaandra [22] studied multimode control, where it is possible to perform several dif-
ferent types of control actions at the same time (e.g., it is possible to add some candidates,
and delete some voters; the standard control problems allow one to either only add candi-
dates or only delete voters, etc.). Faliszewski, Hemaspaandra, and Hemaspaandra [23] were
the first to study control in weighted elections (however the work of Baumeister et al. [5]
is related to this topic). Other authors took a different perspective and, for example, studied
parametrized complexity of control problems [6, 36, 37, 50], or considered the complexity
of control in elections where votes come from some restricted domains (e.g., the single-
peaked domain [8, 25] or the single-crossing domain [38]). On the other hand, Wojtas and
Faliszewski [48] studied counting variants of control problems, where instead of asking if
someone can become a winner we ask for the probability that someone becomes a winner,
given that a random control action is taken. This counting variant of control can be used to
predict election winners and, thus, has similar applications as the research presented in this
paper; it aims to guide the election campaigning process. Recently, Bulteau et al. [11] and
Chen et al. [12] considered combinatorial control, where adding each candidate or voter
may result in adding some other ones as well. This variant of control also is useful from the
point of view of campaign management. After all, if one convinces some person to join the
election (either as a candidate or as a voter), this person might convince some more people.

While traditionally election control problems are limited to adding/deleting/partitioning
candidates and voters, there are many problems that are very close in spirit to election
control. For example, Chevaleyre et al. [13] studied a different setting where new candidates
can appear, and Elkind, Faliszewski, and Slinko [17] studied candidate cloning. Research
on election control has also affected research on related fields. For example, Baumeister et
al. [3] studied control in judgment aggregation.
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Our contribution to the computational study of control is to consider priced variants of
control problems. Yet, the idea of studying priced variants of election problems has appeared
earlier and is due to Faliszewski et al. [20], who introduced the problem of bribery in elec-
tions. In the bribery problem, we are given an election where each voter v has some price
IT(v), and we have available budget B. Upon paying the voter his or her price, we can
change the voter’s vote as we like. The question is if it is possible to ensure a given preferred
candidate’s victory without exceeding the available budget. Many algorithmic ideas of
Faliszewski et al. [20] are useful in our setting as well. Bribery was later studied by various
researchers [8, 22, 24, 39, 49], sometimes in settings other than those regarding elections
[3, 40, 45] (these references are meant as examples only, see the survey of Faliszewski,
Hemaspaandra, and Hemaspaandra [21] for some more discussion). In particular,
Faliszewski [19] and Elkind et al. [15, 16] introduced the idea of voter prices that depend
on the extent to which a given vote is affected. Among other motivations, they thought of
using the bribery framework to model campaign management problems: A campaign man-
ager working for some candidate can spend some effort on a particular voter to affect his or
her preference order, but more significant changes require more effort than the less signifi-
cant ones. Our view of modeling campaign management through priced control problems is
inspired by these works on bribery. Bribery problems with prices dependent on the extent of
the bribery were later studied by various other researchers [4, 9, 14, 41], also in the setting
where a single bribery action can affect multiple voters [10].

1.2 Results

Given the above, very rough, overview of the literature on the complexity of election control,
we see that there are three main lines of research regarding the topic. First, researchers seek
complexity results for more and more different voting rules. Second, researchers seek to
extend the election control model (e.g., by introducing weights, studying restricted domains,
generalizing the notions of constructive/destructive control actions). Third, researchers
apply the ideas from election control in other settings (e.g., in judgment aggregation).

Our paper follows the second line of research: We extend the model of election control by
assuming that different control actions have possibly different costs. We focus on plurality,
Condorcet, and approval voting rules, but we also include some other ones (e.g., Copeland
and certain scoring protocols). We show that for each of these rules the complexity of con-
trol by adding/deleting candidates or voters is the same irrespective if we assume that all
control actions have the same or possibly different costs. This result, however, is not triv-
ial. Of course hardness proofs for the unit-cost model translate directly to hardness results
in the model with varying costs, but easiness results do not. Indeed, sometimes we have to
replace very simple greedy algorithms with more involved ones, sometimes using dynamic
programming. We summarize our results in Table 1.

Our results for plurality, Condorcet, approval, and Copeland yield the question if adding
prices can ever increase the complexity of control problems? We give an affirmative answer
by showing a scoring protocol for which destructive voter control is easy, but for which
destructive priced voter control is hard. This result answers our question, but leaves a bit
more to be desired: Is there a natural voting rule with such a property? We leave this as an
open problem.

The current paper, in some sense, complements that of Faliszewski, Hemaspaandra, and
Hemaspaandra [23] regarding the complexity of control in weighted elections. However,
our results are very different. They show that adding weights to control problems often
increases the complexity of control, whereas this is not the case for adding prices. They
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Table 1 Summary of priced control vulnerabilities. Our results are typeset in boldface. In the table, we
write I to indicate that the voting rule is immune to a given control attack, i.e., that it is impossible to affect
the result by exerting this type of control. By R we mean that the rule is resistant, i.e., that it is not immune
and the election control problem is NP-hard. By V we mean that the voting rule is vulnerable, i.e., that it is
not immune and that there is a polynomial-time algorithm for the election control problem

Adding Deleting Adding Deleting
Control type Candidates Candidates Voters Voters
Const. Dest. Const. Dest. Const. Dest. Const. Dest.

Election system  Control ~ Control ~ Control ~ Control ~ Control ~ Control ~ Control  Control

Approval I A\ A\ I R v R \4
Condorcet I v \% I R v R A\
Copeland R v R v R R R R
Plurality R R R R A\ v v A\

show that destructive weighted voter control under scoring protocols is always easy, whereas
we show that destructive priced voter control can sometimes be NP-hard (however, see the
discussions in Section 5 for a possible explanation of this difference).

2 Preliminaries

In this section we review the voting rules that we study and formally define (priced) election
control problems.

Elections and Election Rules. An election £ = (C, V) consists of a set of candidates
C = {c1,...,cn} and a set of voters V = {vy, ..., v,}. (However, occasionally in our
algorithms we will treat C and V as lists rather than sets. In such cases either the orders of
the candidates/voters on the lists will be irrelevant or will be clearly specified.) Each voter
is associated with this voter’s preferences. The preferences are represented as strict total
orders over the set of candidates. For example, if C = {a, b, ¢, d} then some voter v; might
have preference order d > ¢ > b > a, meaning that this voter likes d best, then c, then b,
and finally he or she likes a least. For each election £ = (C, V) and each two candidates
c,d € C, we define Ng(c, d) to be the number of voters in V who rank ¢ above d.

An election rule (voting rule, election system, voting system) £ is a function which given
an election E = (C, V) maps it to the set of winners £(E) C C. In this paper we focus
on polynomial-time computable voting rules but, in general, determining election winners
can be a much more computationally demanding problem.! There can be more than one
winner of an election. In such situations, to emphasize this fact, we refer to the winners of
the election as the nonunique winners. Similarly, if there is only one winner of an election
we refer to him or her as the unique winner. Finally, we allow situations where an election
has no winners.

IFor example in a voting scheme suggested by Lewis Caroll checking if a distinguished candidate is a winner
of an election is NP-hard [1] and, indeed, is complete for parallel access to NP [31]. The same holds for
the systems of Young [46] and Kemeny [33] (for the latter one, NP-hardness was first shown by Bartholdi,
Tovey, and Trick [1]).
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There are many different voting rules. For example, under the plurality rule we give a
point to each candidate that is ranked first, and choose as winners those candidates that
have the highest number of points. More generally, a scoring rule is defined through a fam-
ily of scoring vectors, one for each candidate-set cardinality, that define how many points
a candidate receives for being ranked at a given position by a voter. Formally, a scor-
ing vector (for an m-candidate election) is an m-tuple @« = («, ..., o) of nonnegative
integers given in nonincreasing order. For each vote where a candidate is ranked i’th, the
candidate receives «; points. The candidates that have the highest number of points are
the winners. For example, plurality is defined through a family of scoring vectors of the
form (1, 0, ..., 0). Other interesting scoring protocols include, e.g., the veto rule (defined
through vectors of the form (1, ..., 1, 0)), the k-approval rule (defined through vectors that
start with k ones and then continue with zeros), the k-veto rule (defined through vectors
that end with k zeros, preceded by ones), and the Borda rule (defined through vectors of the
form (m —1,m —2,...,0)).

In the Condorcet method, a candidate ¢ is a winner if he or she beats all the other can-
didates in head-to-head contests (i.e., if Ng(c,d) > Ng(d, c) for all candidates d different
from c). It is possible that there is no winner under Condorcet rule, but if there is one, he or
she is unique.

The Copeland rule is an extension of the Condorcet rule in the sense that it elects the
Condorcet winner whenever it exists, and otherwise picks those candidates that are closest
to being Condorcet winners in a certain way. Formally, for each rational &, 0 < o < 1, in
the Copeland® voting rule, candidate c receives one point for each candidate d, d # ¢, such
that Ng(c,d) > Ng(d, ¢), and « points for each candidate d, d # ¢, such that Ng(c, d) =
NEg(d, ¢). Candidates with the highest number of points are the winners. Naturally, there
are many other rules that can be seen as extensions of the Condorcet rule (for example, the
maximin rule, the Young rule, the Kemeny rule, the Dodgson rule; see, e.g., the overview of
Brams and Fishburn [7]). However, among this type of rules, in this paper we focus on the
Copeland rule.

Finally, we also consider the approval voting rule. Under approval, voters’ preferences
are represented differently. Instead of ranking the candidates, each voter provides a set
of candidates that he or she approves of. A candidate receives a point for each voter that
approves of him or her. As before, the candidates with the highest number of points are the
winners.

We denote the score of a candidate c in election E by scoreg (c) (the actual voting rule
will always be clear from the context). When the election E is clear from the context, we
sometimes write score(c) instead of scoreg (c). Further, for an election E = (C, V) and
candidates c,d € C, we write diffg(c, d) to mean the difference between the score of
candidate ¢ and the score of candidate d. For the case of the Condorcet rule, by diffg (c, d)
we mean Ng(c,d) — Neg(d, ¢).

Election Control Problems. We consider priced multimode control problems. In control
problems an attacker tries to execute a basic control action such as candidate addition, can-
didate deletion, voter addition, or voter deletion to change the result of an election. In priced
multimode control problems several different types of basic control actions can be com-
bined into a single attack. Moreover, each such action has associated price and the person
exercising control over the election has a limited budget.

We assume that there is a price tag for each voter and candidate that we add or delete.
That is, for each voter v that can be added or deleted, we have a nonnegative integer I1(v),
the price of adding/deleting v. For each candidate c that can be added or deleted, we have
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a nonnegative integer I1(c), the price of adding/deleting c¢. To simplify notation, if we con-
sider, e.g., some set W of voters, we write IT(W) to mean ), IT1(v). We use analogous
notation for candidate sets. Unless stated otherwise, we assume that the prices are encoded
in binary.

With this notation available, we define the most general form of our control problem.

Name: constructive/destructive £-AC+DC+AV +DV -priced-control.

Given: An election (C, V), a candidate ¢ € C, a set of additional candidates D, such that
C N D = @, a set of additional voters W, prices IT for candidates in C U D and voters in
V U W, and a natural number K (the budget).

Question (constructive):  Are there subsets C' € C, D' € D, V' C V, W C W, such
that candidate c is the unique winner of & election ((C\ C")U D', (V \ V/)U W/) and
[Cc’'upH)y+ V' uw’) < K.

Question (destructive):  Are there subsets C' € C\ {c}, D' € D, V' CV, W' C W, such
that candidate ¢ is not the unique winner of £ election ((C \CHUD', (V\V)HUW)
and [I(C’UD)+TII(VVUW’') <K.

This definition calls for some comments. We note that subset C’ is the set of candidates
to be removed from the election and subset D’ is the set of candidates to be added to the
election. Analogously, V' is the set of deleted voters and W’ is the set of added voters. The
total price of such a control action is the sum of the prices of added/deleted candidates and
voters. That is, the total price is IT(C" U D") + I1(V’ U W’). For the case where all the prices
are equal to one, we refer to the above problem as £-AC+DC+AV+DV-control (omitting
the word “priced”).

We point out that even though we follow the idea of multimode control of Faliszewski,
Hemaspaandra, and Hemaspaandra [22], we slightly differ from their approach. Indeed, they
have a separate “budget” for each control type, whereas we have a single parameter K that
models the total budget. This matches our motivating example of campaign management
better. If one is running a campaign, there is a single budget that can be partitioned between
various activities in any convenient way.

We use the unique-winner model. That is, to be successful, a candidate has to be the only
winner of the election. Both the unique-winner model and the nonunique-winner model
are frequently studied in election control literature. While occasionally the choice of the
particular model matters heavily, this is not the case for this work. Nonetheless, for some
of our results we cite papers that focus on the unique winner model and, thus, it is more
convenient for us to focus on this model as well.

In the constructive cases, we will often speak of the distinguished candidate ¢ as the
preferred candidate and thus we will often denote him or her with p rather than with ¢. For
the destructive cases, we will refer to this candidate as the despised one and often use d to
denote him or her.

We are often interested in subproblems of £-AC+DC+AV+DV-priced-control where
only some nonempty subset of basic control actions, AC (adding candidates), DC (deleting
candidates), AV (adding voters), and DV (deleting voters), is available. We denote such
subproblems by leaving only relevant parts of the input and appropriately modifying the
question part of the problem. (Intuitively, one could also think that all the disallowed control
actions have prices higher than the available budget.) Names of such control problems are
formed from the name of the voting system &, followed by the permitted basic control
actions, where all parts are separated with the “+” character. For example, if we studied
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priced control by adding candidates and deleting voters, then the problem’s name would be
E-AC+DV-priced-control.

We say that a voting system is susceptible to constructive control problem C if for some
instance of this control problem with an election E, a preferred candidate is not a unique
winner of the election E, but it is possible to exercise control C over election E in such a way
as to make the preferred candidate the unique winner. Similarly, in the case of destructive
control, a voting system is susceptible to control if we can prevent the despised candidate
from being the unique winner (and he or she had not been the unique winner before). A
voting system is said to be immune to control if it is not susceptible to it. If a voting system
is susceptible to control and the associated decision problem is in P, then we say that the
voting system is vulnerable to this type of control. If a voting system is susceptible to control
and the associated decision problem is NP-hard, we say it is resistant to this type of control.

The main goal of this paper is to establish the complexity of priced control by adding or
deleting candidates or voters for the plurality rule, the approval rule, the Condorcet rule, and
the Copeland rule. We focus on the problems where only a single type of control is allowed,
but we use the expressive power of multimode control to simplify and compress our proofs.

Computational Complexity. We assume that the reader is familiar with basic notions of
complexity theory such as classes P and NP, polynomial-time many-one reductions, and
the notions of NP-hardness and NP-completeness (see, e.g., the textbook of Papadimitriou
[43]). However, most of the proofs in this paper present polynomial-time algorithms.

3 Sometimes prices do not affect the complexity of control

In this section we study priced control under the plurality, approval, Condorcet and
Copeland rules, using the multimode control framework. Naturally, introducing prices
cannot make our control problems easier and, indeed, the following easy proposition holds.

Proposition 3.1 For each voting rule £ and each control type C, it holds that constructive
(destructive) £-C-control polynomial-time many-one reduces to constructive (destructive)
&-C-priced-control.

Proof Given an instance of constructive (destructive) £-C-control, we output an instance
of £-C-priced-control that is identical except that, in addition, all the candidates/voters that
can be added/deleted are associated with the same unit price. O

Thus all the hardness results for the unpriced control problems hold in the priced set-
ting. The main message of this section is that all the existing vulnerability results for
adding/deleting candidates or voters for our four voting rules do carry through to the set-
ting with prices as well. In particular, we show that plurality is vulnerable to constructive
and destructive AV+DV-priced-control, approval and Condorcet are vulnerable to destruc-
tive AC+AV+DV-priced-control and to constructive DC-priced-control, and Copeland is
vulnerable to destructive AC+DC-priced-control. Is it the case that adding prices never
increases the complexity of control problems? In Section 4 we show that there are scoring
protocols for which considering prices does make a difference in terms of the complexity
of control problems.

In the following sections we present our results for the plurality, approval, Condorcet, and
Copeland rules. We remark that we phrase our results in full generality, using the multimode
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control framework. However, of course, our results that regard several control types at the
same time carry through to settings with fewer control types. For example, the fact that
the Condorcet rule is vulnerable to destructive AC+AV+DV-priced-control means that it
is also vulnerable to destructive variants of each of AC-priced-control, AV-priced-control,
and DV-priced-control (this follows naturally from the definition because we can set up
the prices for the disallowed control actions to be above the allowed budget; a very similar
result is given as Proposition 4.9 by Faliszewski, Hemaspaandra, and Hemaspaandra [22]).

3.1 Plurality rule

We start by considering the plurality rule. Bartholdi, Tovey, and Trick [2] have shown that
plurality is resistant to constructive control by adding/deleting candidates, but that it is vul-
nerable to constructive control by adding/deleting voters. Hemaspaandra, Hemaspaandra,
and Rothe [32] have shown that the same results hold for the destructive variants of these
problems. We extend the vulnerability results to the priced case by showing that Plurality-
AV+DV-priced-control is in P both in the constructive and in the destructive case (for the
case without prices, this has already been done by Faliszewski et al. [22]).

Plurality is a very simple rule. If a new vote is added to the election, then the score of
the candidate who is ranked first in this vote is increased by one, while the scores of all
the other candidates remain intact. Similarly, when deleting a single vote from the election,
only the score of one candidate is affected. This locality property makes it possible to con-
struct greedy algorithms for Plurality-AV+DV-priced-control. Our algorithms are natural
extensions of those for the unpriced setting.

Theorem 3.2 Constructive Plurality-AV+DV -priced-control is in P.

Proof Input to the constructive Plurality-AV+DV-priced-control problem consists of an
election E = (C, V), a preferred candidate p € C, a set of additional voters W, a
list of prices IT associated with the voters from V U W, and a natural number K (the
available budget). We give a greedy algorithm which in each step decreases the value of
max.ec\(p} diffg(c, p) by one, and halts either when we make p the unique winner of the
election, or the available budget is exceeded, or there are no more votes to add/remove.

Our algorithm proceeds as follows. If p is already the unique winner, then accept. Other-
wise keep executing one of the following actions, until either p becomes the unique winner
(and then accept), there are no more actions that can be executed (and then reject), or we
exceed the budget (and then reject). There are two possible actions, the one with lower cost
is selected and executed:

1. From the set of additional votes that rank p first, pick a vote w which has not been
added to the election yet and which has minimal price IT(w). The cost of this action is
IT(w). If this action is executed, add w to the election.

2. For each candidate ¢ in arg max.cc diffg (c, p), pick a vote v € V that ranks c first,
that has not already been deleted from the election, and that has minimal price among
such votes. Let U be the collection of the picked votes. The cost of this action is IT(U).
If this action is executed, all the votes from U are deleted from the election.

The algorithm’s pseudocode is presented on Fig. 1. The correctness is straightforward to
see, and it is also easy to see that it runs in polynomial time. Let N be the total number of
voters in V and W. The while-loop in the algorithm executes at most O () times (because
in every iteration p decreases the difference between its score and the score of the current
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PLURALITY-AV+DV-CONSTRUCTIVE-CONTROL((C, V'), p, W, II, K)

E«+ (C,V)

Ve W « 0

while p is not the unique winner of E and (V \ V') U (W \ W’) # 0 do

w « a vote for p with minimal price from W \ W’ (if it exists)

U + votes for candidates in arg max.cc diffg(c, p) with minimal price, one for
each candidate (if this set exists)

if w is defined and (U is undefined or II(w) < IL(U)) then

7 L W« W' U {w}

T W N =

8 K+ K —II(w)

9 else if U is defined then
10 V'« V'uuU

1 K+ K —-1I(U)

12 else reject

13 | E<+ (C,(V\V)UW)
14 if K < 0 then reject

15 accept

Fig. 1 The algorithm for constructive Plurality-AV+DV priced control problem

election winners by one; in the worst case p initially has score 0 and the original election
winners have score N). Each iteration requires polynomial time to compute w and U (a
single linear scan through V and W suffices to achieve this, provided that throughout the
execution of the algorithm we maintain the scores of those candidates who are ranked first
by at least one voter each). O

In constructive Plurality-AV+DV-priced-control we have to ensure that the preferred
candidate’s score is higher than the scores of all the remaining candidates. On the other
hand, in destructive control we only have to ensure that there exists at least one candidate
with score equal to or higher than the score of the despised candidate. This suggests a
simple algorithm enumerating all candidates and checking if one of them can beat or tie the
despised one. As before, this is a natural extension of the algorithms for the unpriced setting.

Theorem 3.3 Destructive plurality-AV +DV -priced-control is in P.

Proof Input to the destructive Plurality-AV+DV-priced-control instance consists of an
election E = (C, V), a despised candidate d € C, a set of additional voters W, a list of
prices associated with voters V U W, and an available budget K € N. For each candidate
c € C )\ {d} we create a list of votes from V where d is ranked first, which we could delete
from the election, and a list of votes in W where c is ranked first, which we could add to the
election. We merge these lists together, sort them in the order of increasing prices, and take
up to the first max (0, diffz (d, ¢)) votes, i.e., the number of votes that creates a tie between
candidate d and candidate c. If there are sufficiently many votes and their total price does
not exceed the available budget K, then we accept. Otherwise if this condition is not ful-
filled for any candidate ¢ € C \ {d}, we reject. Pseudocode for this algorithm is presented
on Fig. 2. It is straightforward to see that the algorithm runs in polynomial time; for each
candidate ¢ one has to perform a simple set of polynomial-time operations. O
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PLURALITY-DESTRUCTIVE-CONTROL((C, V'), d, W, 11, K)

1 B+ (C,V)

2 if d is not the unique winner of E¥ then

3 L accept

4 for ce C'\ {d} do

5 V' « list of voters from V who rank d first

6 W' « list of voters from W who rank c first

7 L « list V' U W’ sorted in the order of increasing prices
8 truncate L to contain at most first max(0, diffz(d, ¢)) votes
9 if diffg(d,c) < ||L| and II(L) < K then

10 L accept

11 reject

Fig. 2 The algorithm for destructive Plurality-AV+DV-priced-control problem

Thus, for the case of plurality, introducing prices is seamless; we can adjust the existing
greedy algorithms in a simple way. We believe that this is a very positive result. Priced
control problems are more realistic and it is convenient that considering prices comes at
essentially no additional cost in terms of computational complexity.

3.2 Approval and condorcet rules

Let us now move on to the case of approval and Condorcet. We extend the results of
Faliszewski, Hemaspaandra and Hemaspaandra [22] (who themselves relied on the results
of Bartholdi, Tovey, and Trick [2] and Hemaspaandra, Hemaspaandra, and Rothe [32]),
who have shown that the approval and Condorcet rules are vulnerable to destructive
AC+AV+DV-control, to apply to priced control. We show that approval and Condorcet are
vulnerable to destructive AC+AV+DV-priced-control as well. We do not consider destruc-
tive priced control by deleting candidates because approval and Condorcet are immune to
this type of control (and adding prices makes no difference with respect to immunity).
On the other hand, we show that approval and Condorcet are vulnerable to constructive
DC-priced-control. Naturally, through Proposition 3.1 and the results of Bartholdi, Tovey,
and Trick [2] and Hemaspaandra, Hemaspaandra, and Rothe [32], approval and Condorcet
are resistant to constructive voter priced control problems, and are immune to constructive
priced control by adding candidates.

The reader may wonder why we consider the approval and Condorcet rules jointly. The
reason is that both approval elections and Condorcet elections can be understood in terms of
the results of head-to-head contests between candidates. By head-to-head contests we mean
elections where only two candidates are present. To facilitate this approach we adopt the
following convention: we say that candidate c is preferred to candidate d in an election with
voter set V' if and only if diff((c 4),v)(c, d) > O (recall that for the approval rule diffg (c, d)
means the difference of scores of candidates ¢ and d in election E, whereas for Condorcet
it means the value Ng(c,d) — Ng(d, ¢)).

With this notation available, we see that a candidate is the unique winner of an approval
election or of a Condorcet election if and only if he or she is the unique winner of all
the head-to-head contests with the other candidates. Thus to prevent a despised candidate
d from being a unique winner, we have to ensure that another candidate beats or ties the
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despised candidate in their head-to-head contest. The despised candidate’s loss to some
candidate ¢ can be achieved by introducing voters who prefer c to d, or by deleting voters
who prefer d to c. Each such added or deleted voter introduces the same change in the
score difference (difference in number of approvals) between candidate ¢ and the despised
candidate. This observation suggest a simple algorithm based on enumeration of candidates
who might ensure the despised candidate’s defeat, combined with a greedy approach to
selecting the votes relevant to the head-to-head contest with the despised candidate.

Theorem 3.4 Approval voting and Condorcet voting are vulnerable to destructive
AC+AV+DV-priced-control.

Proof In a destructive AC+AV+DV-priced-control instance we are given an election £ =
(C, V), a despised candidate d € C, a set of additional candidates D, a set of additional
voters W, prices IT associated with the candidates in D and the voters in V U W, and an
available budget K € N.

If candidate d already is not a unique winner of election E then control is successful and
we accept. Otherwise, for each candidate ¢ € (C U D) \ {d}, we create a list L containing
those voters from V', where d is preferred to ¢, and those voters from W, where c is preferred
to d. We sort L in the order of increasing prices, and limit it to the first up to diffg(d, ¢)
votes. In our control action we delete the votes from V that are in L, and add the votes from
W that are in L. Therefore the total price of control action is the sum over:

1. The prices associated with the voters added to and removed from the election.
2. The price of adding c to the election, if ¢ € D.

If there are enough votes to create a tie between candidate ¢ and candidate d, and the total
cost does not exceed K, accept. Otherwise, repeat this procedure for all the remaining can-
didates. If control is not possible for any candidate ¢ € (C U D) \ {d}, reject. The final
algorithm is presented on Fig. 3.

The algorithm runs in polynomial time. The outer loop is executed at most O (||C||) times
and each iteration is easily seen to be polynomial-time computable. O

In the constructive setting, approval and Condorcet are vulnerable to control by deleting
candidates only. (They are immune to control by adding candidates and resistant to voter
control [2, 32].) We extend this result to the priced setting. Clearly, to make the preferred
candidate win, all the candidates that defeat him or her in their head-to-head contest should
be deleted. Furthermore, as deleting candidates does not affect in any way the results of
head-to-head contests, it is a necessary and sufficient condition. There is a single optimal
control action.

Theorem 3.5 Approval voting and Condorcet voting are vulnerable to constructive DC-
priced-control.

Proof 1In constructive DC-priced-control instance we are given an election £ = (C, V),
a preferred candidate p € C, a list of prices associated with the candidates in C, and an
available budget K. Candidate p is the unique winner of the election E if and only if he
or she beats all remaining candidates in their head-to-head contests. Therefore, if the total
price necessary to delete all the candidates who tie or beat the preferred candidate p in
their head-to-head contests is within budget, then accept, otherwise reject. Pseudocode is
presented in Fig. 4. The algorithm runs in polynomial time; computing diffz (p, ¢) requires
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APPROVAL-CONDORCET-DESTRUCTIVE-AC+AV+DV-CoNTROL((C, V), d, D, W, 11, K)
E«+ (C,V)

2 if d is not the unique winner of £ then

3 L accept

for ce (CUD)\ {d} do

V' < list of those voters from V who prefer d to c

W' < list of those voters from W who prefer ¢ to d

L + list VU W’ sorted in the order of increasing prices
truncate L to contain at most first diffp(d, ¢) votes
K'«+1I(L)

10 if ¢ € D then

11 L K' + K'+1I(c)

12 if diffp(d,c¢) < ||L]] and K’ < K then

13 L accept

—_

14 reject

Fig. 3 The algorithm for destructive AC+AV+DV-priced-control in Approval voting and Condorcet voting

a single scan over the whole profile (provided one computes diffg (p, ¢) simultaneously for
all the candidates from C) and the rest of the algorithm is straightforward. O

Again, introducing prices does not make the control problems significantly harder for
the approval and Condorcet rules. It is easy and natural to extend existing greedy algorithms
to take prices into account. As we will see in the next section, the case of Copeland is
somewhat more involved.

3.3 Copeland rule

Faliszewski et al. [24] have studied Llull and Copeland voting rules and have shown that
Copeland® fully resists constructive control, resists destructive AV and DV control, but is
vulnerable to both destructive AC and DC control. These vulnerability results have been
combined into destructive AC+DC control vulnerability by Faliszewski, Hemaspaandra,
and Hemaspaandra [22]. Here we extend this result to the priced control framework.

In the following theorem we extend the algorithm of Faliszewski, Hemaspaandra, and
Hemaspaandra [22, Theorem 4.10] to the case of destructive AC+DC-priced-control, for
the case of Copeland® and Copeland! rules. Then we explain why it does not work for
Copeland® for all rational « values, &, 0 < o < 1. Finally, in Theorem 3.8, we provide an
algorithm which does work for all rational values of «.

APPROVAL-CONDORCET-CONSTRUCTIVE-DC-CONTROL((C, V), p,II, K)
E«+ (C,V)
C' + {ce C\{p} | diffg(p,c) <0}
if TI(C') < K then
‘ accept
else
L reject

ot W N

(=]

Fig. 4 The algorithm for constructive DC-priced-control in Approval voting and Condorcet voting
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Theorem 3.6 Destructive AC+DC-priced-control is in P for Copeland® and Copeland'
voting.

Proof 1In adestructive Copeland®-AC+DC-priced-control instance, where « is in {0, 1}, we
are given an election £ = (C, V), a despised candidate d € C, a set of additional candidates
D, a list of prices IT associated with the candidates in C U D, and an available budget
K e N. To preclude despised candidate d from being the unique winner of the election, we
need to ensure that the score of another candidate from C U D, call him or her p (we try
each possible choice of p), is higher or equal to the score of d, i.e., diffg(d, p) < 0. The
score of a candidate in a Copeland® election is the sum of his or her scores in head-to-head
contents with the remaining candidates:

score(c,v)(d) = Z score(e,q},v)(c).
ceC\{d}

For each candidate ¢, define gain, ;(c) to be the score difference that candidate p gains
relative to the despised candidate d, if candidate c is part of the control action (assuming
that p participates in the election):

score((e,q),v)(d) — scoreie, py,v)(p), ¢ € C,

ain, ,(c) =
g I”d( ) { score({c_,,},v)(p) - SCOl"e({c,d},V)(d)’ ceD.

It is easy to see that for Copeland® and Copeland!, for each candidate c, gain,, ;(c) is either
—1,0 or 1. Moreover, as our goal is to decrease d’s advantage over p, we are only inter-
ested in candidates with positive gain. Consequently, the following greedy approach can
be used to select candidates to add or delete. From C \ {d, p} and D \ {p} select a list L
of candidates with positive gain. Sort L in the order of increasing prices. Take first up to
max (0, diffg (d, p)) candidates from L and if there was a sufficient number of them, then
A = LU (D N{p}) describes a successful control action. If the total price of control action
A is within budget K then accept, otherwise repeat this procedure for another choice of
candidate p. The final algorithm is presented on Fig. 5.

The algorithm runs in polynomial time. Computing the scores of all the candidates and
all the gain values requires a scan over every vote for each pair of candidates. The main loop
executes O(||C U D||) times and each iteration requires simple polynomial-time operations.

O

The above algorithm relies on the fact that all the candidates that we add or remove from
the election introduce the same score difference between the despised candidate and our
chosen candidate p. This is a crucial element ensuring correctness of the greedy approach.
In Copeland® for some rational o, 0 < o < 1, the score difference could be 1, @ or 1 — «.
This makes the candidates incomparable and this greedy approach infeasible.

To facilitate our dynamic programming solution, we reformulate Copeland® into voting
system Copeland&’y that admits only natural numbers as scores.

Definition 3.7 Let x, y be two nonnegative integers. We define voting rule Copelandﬁfy as
follows. Given an election E = (C, V), each candidate c receives the following score:

scoreg(c) = x |[{d € C\{c} | Ne(c,d) > Ne(d, o)}l
+y {d € C\{c} | Ne(c,d) = Ne(d, o)}l

The candidates with the highest score are the winners.
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CoPELANDO1-DESTRUCTIVE-AC+DC-CoNTROL((C, V), d, D, 11, K)
1 B+ (C,V)
2 if d is not a unique winner of E then
3 L accept
for p e (CUD)\ {d} do
C" < {ce C\{p,d} | gain, 4(c) > 0}
D'« {ce D\ {p} | gain,4(c) > 0}
L + list C" U D' sorted in the order of increasing prices
truncate L to contain at most first diffg(d, ¢) candidates
K' «+ 1I(L)
10 if p € D then
11 | K"+ K'+TI(p)
12 if diffp(d,p) < ||L|| and K’ < K then
13 L accept

Iy

© 0 N O >

14 reject

Fig. 5 The algorithm for destructive AC+DC-priced-control in Copeland® and Copeland! voting

It is easy to see that for each rational &, 0 < o < 1, Copeland® election is equivalent to
the Copelandyy” election where o = y/x, for some x, y € N.

Theorem 3.8 Foreach x, y € N, destructive Copelandi{f Y.AC+DC-priced-control is in P.

Proof The input to the destructive Copelandy”-AC+DC-priced-control problem consists
of an election E = (C, V), a set of additional candidates D, a despised candidate d € C,
a list IT of prices associated with candidates C U D, and available budget K € N. If d
is already not a unique winner of the election then accept. Otherwise for each candidate
p € C U D distinct from d, we check if it is possible to ensure that diff(p,d) > 0 by
executing some control action within budget. Let A = (CU D)\ {d, p} = {ay, ..., a,} and
define m(i, g) to be the minimal price of a control action necessary to achieve a total gain
(as defined in the previous proof) of at least g by adding/deleting candidates from the set

{ai, ..., a;} only. It is easy to see that the following recursive relation holds:
0 ifi=0andg =0
m(i. g) = 00 ifi=0and g #0
8 min(mG — 1, ), M(a)) ifi > 0and g < gain, 4(a)

min (m(i —1g,m@ — 1, g — gain, 4(a;)) + l'[(ai)) ifi > Oand g > gain, ;(a;)

Indeed, m (0, g) is the price of achieving gain g without adding or deleting candidates and,
so, m(0,g) = 0if g = 0 and m(0, g) = oo otherwise. Now, the value m(i, g) fori > 0
can be computed as follows: To achieve gain g by adding/deleting candidates from the set
{ai, ..., a;} we either add/delete a; or we do not. If we do not, then m(i, g) = m(@i — 1, g).
If we do, then again we consider two cases. If adding/deleting a; alone guarantees gain g
(e,if g < gainp, 4(ai)) then it suffices to only add/delete a; and so we have m(i, g) =
I1(a;). Otherwise, if g > gain », 4(a;), then we add/delete a; and some candidates from the
set {ai,...,aj—1}. In effect, m(i,g) = m(i — 1, g — gainp,d(ai)) + Il(a;). Since, while
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computing m (i, g), we do not know if we add/delete a; or not, we compute both options
and take the one with lower cost.

When the values m(i, g) are computed, it is easy to solve our problem. If p is in C,
then p can beat or tie the despised candidate d if and only if m(n, diffg(d, p)) < K. If p
is in D (i.e., if we need to add p to the election), then p can beat or tie d if and only if
m(n, diffg(d, p)) + 1(p) < K.

Let us now argue that the algorithm runs in polynomial time. Computing the scores
of all the candidates and all the necessary gain values requires a scan over every vote,
for every pair of candidates. For a given choice of p, computing the m(i, g) values
also requires a polynomial number of steps. This is so because the values of i are
between 0 and ||C U DJ and the maximum value of g that we may need to consider
is ||C U D] max(x, y). Using standard dynamic-programming techniques we can com-
pute all the m(i, g) values in polynomial time. Finally, there are polynomially many
choices of p. O

Corollary 3.9 For each rational o, 0 < o« < 1, destructive Copeland®-AC+DC-priced-
control is in P.

Proof For each rational o, 0 < « < 1, this follows directly from Theorem 3.8. O

The above discussion shows that algorithms for priced control are not always simple
extensions of those for the unpriced cases, and indeed can require new ideas. In the next
section we show that it is possible that introducing prices moves control problems from
being solvable in polynomial time to being NP-hard.

4 Prices can increase the complexity of control

In the previous section, we have shown that for several prominent voting rules introducing
prices does not affect the complexities of our control problems. Now we will show that,
nonetheless, there are rules for which it is not the case. First, we show that destructive AV-
priced-control and DV-priced-control problems are polynomial-time solvable for scoring
rules, provided that either the prices or the entries of the used scoring vectors are encoded
in unary.? In particular, it means that for every scoring protocol, destructive control by
adding/deleting voters (without prices) is in P. Second, we show an example of a scoring
protocol, whose entries are encoded in binary, for which destructive AV -priced-control and
DV-priced-control problems are NP-hard.

It is interesting to compare our results to those of Faliszewski, Hemaspaandra, and
Hemaspaandra [23] regarding control problems in weighted elections. While they mostly
consider constructive cases, they remark that destructive voter control for scoring protocols
in weighted elections is in P (in weighted elections for each voter v there is a natural num-
ber w,, his or her weight, and we treat the vote of v as if it were cast by w, voters with the
same preference order). Our results show that the complexity of destructive voter control
for the case of priced elections behaves in much more intricate ways.

2Prior to our work, Faliszewski at al. [20] already observed that some NP-complete priced bribery problems
can be solved in polynomial time if the prices are encoded in unary.
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4.1 Vulnerability results

We first provide our vulnerability results. To simplify the proofs, we define the following
head-to-head priced control problem in which we ask if some specific candidate can tie or
beat the despised candidate by adding voters to the election.

Name: Scoring head-to-head priced control.

Given: An election (C, V), a scoring vector & = (a1, ..., a|c|), a despised candidate
d € C, a preferred candidate p € C distinct from d, a set of additional voters W, a list
of natural numbers IT describing prices associated with voters W, and available budget
K e N.

Question: Is there a subset W C W such that diffc yuwn (p, d) > 0and II(W’) < K.

In scoring head-to-head priced control, candidates’ scores in the election are calculated
using a given scoring vector «.

Lemma 4.1 Scoring head-to-head priced control is in P if scoring vectors entries are
represented in unary.

Proof 1In scoring head-to-head priced control we are given an election £ = (C, V), a scor-
ing vector «, a despised candidate d, a preferred candidate p € C \ {d}, a set of additional
voters W with their prices IT, and available budget K € N. We assume that diffg (d, p) > 0;
otherwise the problem is trivial. Define gaing(v) to be diffc (»))(p, d), i.e., the score dif-
ference that p gains relative to d if we add voter v to the election E. We observe that it is of
no use to add voters with nonpositive gain if we try to increase the score difference between
pandd.Let W = {wy, ..., w,} be the set of voters from W with positive gain. Let m (i, g)
be the minimal price of a control action necessary to achieve a total gain (summed over all
votes we decided to add) equal to or higher than g, using the first i voters from W’. If it
is not possible to achieve such gain, define m (i, g) to be infinite. The value m (i, g) can be
computed using the following recursive definition:

0 ifi=0andg =0
mi. g) = 00 ifi=0andg >0
8= minpmG — 1, g), Tw;)] ifi > 1andg < gaing (w;)

min [m(i — 1, 8), m(i — 1, g — gaing (w;)) + (w;)] ifi > 1 and g > gaing (w;)

(The explanation and justification of this function is, in essence, the same as for the anal-
ogous function in the proof of Theorem 3.8, but considering the voters instead of the
candidates.) Candidate p can tie or beat d if and only if m(” W'\, diffg(d, p)) < K. This
completes the description of the algorithm.

The algorithm runs in polynomial time. Computing all the scores and all the gain values
requires a single scan over the whole profile (and the votes that can be added). Com-
puting all the necessary m (i, g) values, using standard dynamic-programming techniques,
also requires only polynomially many steps because there are O (]|W]|) choices of i and
O (o1]||W]|) choices of g, where o is the number of points that our scoring protocol assigns
to the top-ranked candidate (recall that we have assumed the scoring protocol to be encoded
in unary). O

Lemma 4.2 Scoring head-to-head priced control is in P if prices are represented in unary.
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Proof We give a proof similar in spirit to the proof of Lemma 4.1. In scoring head-to-
head priced control we are given an election £ = (C, V), a distinguished candidate d, a
preferred candidate p € C\ {d}, a set of additional voters W and their prices 1. Assume that
diffg (d, p) > 0; otherwise the problem is trivial. Define gaing (v) to be the score difference
that p gains relative to d if we add voter v to the election E. Let W = {wy, ..., w,} be
the set of voters from W with positive gain. Let g(7, ) be the maximal total gain, summed
over all votes we decided to add, that can be achieved, using first i votes from W’ with total
price of control not exceeding 7. The value g(i, ) can be computed using the following
recursive formulation:

0 ifi =0
gi,m)=4 g —1,m) ifi > 1andIT(w;) > 7
min [g(i — 1, 7), g — 1, — TT(w;)) + gaing(w;)] ifi > 1 and M(w;) < 7

(The explanation and justification of this function is, in essence, the same as for the anal-
ogous function in the proof of Theorem 3.8, but considering the voters instead of the
candidates.) Candidate p can tie or beat d if and only if g(|W'|, K) > diffg(d, p). This
completes the description of the algorithm.

Using the same argument as in the preceding lemma, it is easy to see that the algorithm
runs in polynomial time. In particular, computing all the necessary g(i, =) values, using
standard dynamic-programming techniques, requires polynomially many steps because
there are O (]|W]|) choices of i and O(P|W]|) choices of 7, where P is the price of the
most expensive voter in W (recall that prices are encoded in unary). O

Now we are ready to combine results from Lemma 4.1 and Lemma 4.2 and state the
following result.

Theorem 4.3 Destructive AV -priced-control is in P for scoring protocols if either the scor-
ing vector entries or the prices are represented in unary, and if the scoring vectors for
each number of candidates are computable in polynomial time with respect to the required
number of candidates.

Proof 1In the destructive AV-priced-control problem we are given an election £ = (C, V),
a distinguished candidate d € C, a set of additional voters W with their prices I1, and avail-
able budget K € N. If the despised candidate d is already not a unique winner of election £
then accept. Otherwise check using the procedure from Lemma 4.1 (when the scoring vector
entries are represented in unary) or Lemma 4.2 (when the prices are represented in unary)
if there exists a candidate p € C \ {d} such that p can tie or beat candidate d after addition
of some voters from W, within available budget K, and accept or reject accordingly. This
requires at most ||C|| — 1 executions of algorithms from the mentioned theorems, therefore
this procedure runs in polynomial time. O

The same approach can be used in the case of destructive control by deleting voters. No
significant changes to the above proofs are required. It is simply a matter of updating the
definition of gain to reflect that we are deleting voters instead of adding them, and running
the dynamic programming over the voters already in the election instead of those that can
be added.
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Corollary 4.4 Destructive DV-priced-control is in P for scoring protocols if either scoring
vector entries or prices are represented in unary, and if the scoring vectors for each number
of candidates are computable in polynomial time in the required number of candidates.

For most natural classes of scoring protocols, such as, e.g., the Borda rule, the
assumptions of the above theorems hold. We have the following corollary.

Corollary 4.5 Plurality, veto, k-veto, k-approval and Borda are vulnerable to destructive
AV and DV priced control.

As a side comment, we mention that for some rules there is an interesting connection
between the complexity of DV-priced-control and the complexity of AV-priced-control.
Indeed, for some rules such as Borda, Condorcet, or Copeland, we can reduce the former to
the latter.

Theorem 4.6 Constructive (destructive) DV-priced-control is reducible in polynomial time
to constructive (destructive) AV -priced-control for those voting rules for which it is possible
to determine the winners in election E based on the following information only: (1) the set of
all the candidates, and (2) for each two candidates ¢ and d, the value Ng(c,d) — Ng(d, c).

Proof Let Ipy be an instance of constructive (destructive) DV-priced-control with election
E = (C, V), a distinguished candidate ¢ € C, a list of prices associated with voters TII,
and available budget K € N. We reduce Ipy to instance I4y of constructive (destructive)
AV -priced-control, consisting of:

1. election E = (C, V),
distinguished candidate c,

3. the set of additional voters W which consists of the voters from V with their preference
orders reversed, and

4. available budget K.

Further, the price of adding voter w € W is the same as the price of deleting the voter v € V
(in Ipy) from which w was created.

To see why the reduction works, it suffices to make the following simple observation. Let
v be some voter in V and let w be the corresponding voter from W. Consider some arbitrary
candidates a and b. Since w’s preference order is the reverse of that of v, the following
holds:

N, v\ (@, b) — Nc,v\ivp (b, a) = N(c,vuiwy (@, b) — N, vuiwy) (b, a).

That is, as far as the values Ng (a, b) — Ng (b, a) are concerned, the effect of deleting voter v
is the same as the effect of adding voter w. By the assumption that winners depend only on
the values Ng(a, b) — Ng (b, a) (for all the candidates a, b € C), we have that the reduction
is correct. Polynomial running time is straightforward. O

To see that the above result applies to Borda, we note that the Borda score of a candidate
¢ in election E = (C, V) can be expressed as scoreg (c) = Zdec\{c} NEg(c, d) (candidate
¢ receives a point for each candidate d and each voter that ranks ¢ above d). For each
d € C\ {c}, we have that Ng(c,d) + Ne(d, ¢) = ||V and, so, (Ng(c,d) — Ne(d, ¢)) +
|Vl = 2NEg(c, d). This means that the Borda score of candidate c is equal to scoreg(c) =
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% ZdeC\{c}(NE (¢,d) — Ng(d,c) + ||V]). So, Borda satisfies the conditions of the above
theorem.

Theorem 4.6 is quite interesting since there are relatively few relations known between
the complexities of various election-related problems. Some similar results were given
by Faliszewski, Hemaspaandra, and Hemaspaandra [23] for the case of voter control
under k-approval and k-veto, by Hemaspaandra, Hemaspaandra, and Menton [30] for
the case of destructive control-by-partition problems, by Faliszewski, Hemaspaandra, and
Hemaspaandra [20] for a relation between manipulation and priced bribery, and by Elkind,
Faliszewski, and Slinko [16] for the case of the possible winner problem and the swap
bribery problem.

4.2 Resistance results

We will now show a scoring protocol whose entries are computable in polynomial time and
for which both destructive priced control by adding voters and destructive priced control by
deleting voters are NP-hard. By our previous results, we know that the entries of our scoring
protocol cannot be polynomially bounded in the number of candidates.

We design our scoring protocol to facilitate an NP-hardness proof based on a reduction
from the X3C (eXact 3 Cover) problem. X3C is a well-known NP-complete problem [28].
We are given a set X and a family S of three-element subsets of X. We ask if there is an
exact cover of X using sets from S. Formally, we define the X3C problem as follows:

Name: X3C
Given: Nonempty set X = {0,...,3k — 1}, family S = {S), ..., S,} of three-element
subsets of X.

Question: Isthere I C {1,...,n}suchthat ||| =kand | J,, S; = X?

iel

We now move on to defining our scoring protocol. For a given positive integer n and
three integers 0 < x < y < z < n, let f,(x, y, z) be the number of 3-element subse-
quences of (n — 1, ..., 0) that are greater or equal to (z, y, x) in lexicographical order. For
example, if we consider all 3-element subsequences of (5, ..., 0), the greatest tuple in lex-
icographical order is (5, 4, 3), therefore f5(3,4,5) = 1. On the other hand (2, 1, 0) is the

least subsequence and we have that f5(0, 1,2) = (2) = 20. More generally, we have that

f Bk = 3,3k —2,3k — 1) = Land f3(0,1,2) = (¥).

Definition 4.7 Define scoring protocol SPy as follows. If the number of candidates in an
election is equal to m = (3{‘) + 1 for some k € N, then we use scoring vector (o1, ..., &)
such that:

L afey = (33k)x + (33k)y + (33k)z where (z, y, x) is a subsequence of (3k — 1,...,0).
2. oy =0.

Otherwise, we use the Borda scoring vector.

Note that if f3r(a,b,c) < far(x,y,z), where tuple (z, y, x) and tuple (c, b, a) are
subsequences of (3k — 1,...,0), then {c, b, a) >1ex (z,V, x). Applying the definition of
lexicographical order, we have that (c > z) or(c =z Ab > y)or(c=zAb=yAa > x)
and in each of these cases it is easy to verify that & f;; (4.5,c) > @ f3(x,y,7)- Therefore, indeed,
scoring vectors in the SPy protocol are defined properly.
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Qi =[efe[e] [ ] Qg = [o] [o] o] | a1 = [Jee[e[ T ] Q16 =[[o] T [o[e]
Gz = [o]e] [o] [ ] a7 = (o[ [o] T Je] Q12 =[Je]e] [o] ] air =[ Je]e[e[ ]
a3 = [o]e[ [ o[ ] ag = (o[ [ [e[e] | a1z =[Jee] T [e] aig =[] [e]e[ o]
ay = [o[e[ [ [ [e] Qg = [o[ T Je[ Je] aig = [Je[ Jefe[ ] Q19 =[] o] [e[e]
a5 = [o] Je[e] T | a0 =[o] T T Je[e] a15 = [e] Te[ o] Qg0 =[] ] Je]e]e]

aon =[TTTT[T]

Fig. 6 SPy scoring vector entries for election with 21 candidates. Values of scoring vector are represented
in 20-ary numeral system, ones are depicted by cells with black dot inside, and zeros are depicted by empty
cells.

Before presenting our main resistance results of this section, we give some intuition
regarding SPy scoring protocol in the following example.

Example 4.8 Let us consider the SPy scoring vector for the case where the number of
candidates is of the form (33k)+1 for some k € N. The entries of the scoring vector, for k = 2,

are presented on the Fig. 6. The entries of our scoring vector, in base (3;) encoding, are

either all zeros or are all zeros with three ones. The first important property of SPy that we

will use in our proofs is a one-to-one correspondence between the entries o, . . ., o &) and
3

three element subsets of {0, ..., 3k — 1}. The second one is the fact that to cause overflow

when adding numbers base (33k) whose digits are only zeros and ones, we need to add at

least (33k) numbers. By contrapositive, when we sum fewer than (33k) such numbers, there is

no overflow.
Now we can state and prove our main results of this section.
Theorem 4.9 SPy is resistant to destructive AV -priced-control.

Proof SPy is clearly susceptible to AV control. To show NP-hardness we give a reduc-
tion from X3C. Let (X, S) be an X3C instance, where X = {0,...,3k — 1} and S =
{S1,...,8,}. We assume that k < n < (33"), as otherwise there is a trivial solution. Let

m= (33/‘). (We assume that m > 3; otherwise the instance can be solved trivially). We create
a destructive AV-priced-control instance in the following way:

1. Candidate set C consists of {d, p} U B where B ={b; | 1 < j <m — 1} and d is the
despised candidate.

2. The voter set V contains the following voters (when writing @ > B we mean that
(Vb € B)la > b], and the order among candidates in B is arbitrary unless further
specified, similarly for B > a):

(@) (n + k)m? voters with preference order d > p > B.

(b) (n + k)ym? voters with preference order p > d > B.

(c) k voters with preference order BU{d} > p, where candidate d is placed in position
f(Bi —3,3i —2,3i — 1) fori, 1 <i <k.

3. The set W of additional voters consists of one additional vote w; for each set §; in
S. In vote w;, candidate d is least preferred and candidate p is placed in such a
way that the addition of w; to the election increases p’s score by »_ jes; m’ (e.g.,
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if S; = {7,9, 13} then candidate p is placed in position f3;(7,9, 13)). The remain-
ing candidates are placed arbitrarily in the vote. The cost of adding w; is equal

to Z/'ES m!.

4. The total available budget K is equal to ZSk !

In election E = (C, V), prior to adding any of the voters from W, the candidates have
the following scores:

3k—1
scorep(d) = | (n + k)ms] [2m3’<*1 +2m3 2 o33 4 m3k*4] +3 i,

(n+ k)ms] [2m3k_1 +2m¥* 2 4 2m3k—5]

Tk [m3k71 4+ om3k2 +m3k73]'

scoreg(p) = [(n + k)ms] [2m3k Upom% =2 4 k=3 4 m3k—4] .
scoreg (bj) < [

Candidate d is the unique winner of this election with score advantage of 23501 m'

(equal to the available budget K) over the candidate p, and score advantage of more than
n(m3*—1 4 m3*=2 4 533y over the candidates in B. To see why this is the case, note that
for each b; € B it holds that (recall that m > 3):

scoreg (d) — scoreg (b;) > [(n + k)mS] [m3k73 +m34 = 2m3k*5]

3k—1
+ Z mi —k I:m3k71 +m32y m3k73]

3k—1
= nm3* 1+ kemdk 1 Z m—k [mSk—l 1 om3k2 +m3k—3]
i=0
> am* > nm¥ 4§ m2 k),

If the input X3C instance has a solution, then adding votes from W that correspond to
the sets §; that constitute an exact cover of X increases the score of candidate p by K
and requires budget of K. The score of the despised candidate d remains the same and
destructive control is successful.

For the reverse direction, if control is possible then it must be a result of a tie between d
and p. This is so because the scores of candidates from B can be increased by no more than
n(m3k‘1 + m3k-2 4 m3k‘3), which is not sufficient to tie or beat d. Moreover, the score
of candidate p must be increased by at least diffg(d, p) = K, and by no more than the
available budget K. Thus the sets S; that correspond to the added voters must form an exact
cover of X (recall the second property from Example 4.8). O

Destructive priced control by deleting voters also is NP-hard for our scoring rule.
Theorem 4.10 SPy is resistant to destructive DV -priced-control.

Proof We give a reduction from X3C. Let (X, S) be an X3C instance, where X =
{0,...,3k — 1},and S = {81, ..., S;). We assume that k < n < (*F) (otherwise there is a

trivial solution). Let m = (3316) (we assume that m > 3; otherwise the input instance is trivial
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to solve). Destructive priced control by deleting voters instance is created in the following
way:

1. Candidate set C consists of {d, p} U B where B = {b; | | <i <m — 1}, and d is the
despised candidate.

2. The available budget K is Z3k Uml.

3. Voters set V contains the following voters:

(@ (3n + k)m? voters with preference order d > p > B and cost K + 1.

(b)  (3n + k)m?> voters with preference order p > d > B and cost K + 1.

(c) k voters with preference orders of the form B U {d} > p, where candidate d is
placed in position f3;(3i —3,3i —2,3i — 1) foreachi in {1, ..., k}, the cost of
each voteris K + 1.

(d) n voters with preference orders of the form B U {p} > d. For each §; € S, there is
a vote in which p is placed in such a way as to receive score Zj s mJ from this
vote. The cost of each voter is K + 1.

(e) n voters, one for each S; in S, with preference orders of the form B U {d} > p,
where in the vote corresponding to set S;, candidate d is placed in such a way as to
receive score of Y jes; m/ . For each i, the cost of the vote corresponding to S; is

ZjES,' mj

Candidates receive the following scores in election £ = (C, V):

Iscoreg (d) = [(3n + k)m5] [2m3’<—1 4 2m32 o33 m3k_4]

3k—1
+ Z Z m! + Z m'
i=1 jes;
n
scoreg (p) = [(311 + k)ms] [2m3k—1 +2m3* =2 o3 4 m3k—4] + Z Z m/.
i=1 jES,'

scorer (b)) = [Gn+kom® | [2m¥ 4 2m¥2 4 25|

+ 2n+k) [mSk*1 +m3*2 4 m3k’3] .
Candidate d is the unique winner of election E with score advantage of 23" Umi (equal

to the available budget K) over p, and with score advantage of more than n(m3k o +m3k—24

m3k=3) over the candidates from B.

If input X3C instance has a solution, then deleting votes from V of type (33e) that cor-
respond to sets S; that constitute an exact cover of X decreases the score of d by K and
requires a budget of K. The score of candidate p is unchanged and, thus, p and d tie and so
destructive control is successful.

In the other direction, if control is possible it must be a result of a tie between d and
p- This is so due to the existing score differences between the candidates in B and d, the
fact that only voters of type (33e) can be deleted, and their prices. The score of candidate
d must be therefore decreased by at least K to ensure that d ties or loses with p. But at the
same time it cannot be decreased by more than K because the introduced score difference
between d and p is equal to the price of the control action. Thus the total price must be
exactly K and the deleted voters directly correspond to sets S; constituting an exact cover
of X. (|
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We believe that the above results are quite intriguing. While our scoring protocol SPy is
not likely to be used in any real-life election, it is not completely unnatural either. It is inte-
resting if one can show that destructive control by adding/deleting voters is NP-hard for
scoring vectors of the form (2’”’1, om=2 ol 20). We leave this as an interesting open
problem.

5 Summary

In this work we examined the computational complexity of election control for the case
where different control actions (such as adding/deleting different candidates or voters)
may come at different prices. We argued that such problems are useful ways of modeling
problems that arise in planning political campaigns.

We examined the plurality, approval, Condorcet, and Copeland rules and we have shown
that introducing prices does not affect the complexity of control problems for these rules.
On the other hand, we have shown that there are scoring protocols for which unpriced
destructive control is polynomial-time solvable, but for which introducing prices moves
the problem to be NP-hard. This is quite interesting when we compare the complexity of
priced control with the complexity of unpriced control for weighted elections. For the latter,
Faliszewski, Hemaspaandra, and Hemaspaandra [23] show that destructive voter control is
polynomial-time solvable for all scoring protocols, whereas we show a scoring protocol for
which priced destructive voter control is NP-hard. This is interesting because in the bribery
setting (which is relatively similar to the control setting) adding prices has a smaller impact
on the complexity of the problem than adding weights. While one might have expected the
same behavior for the case of control, we show that this is not the case. One possible rea-
son for this difference between the complexity of the weighted and the priced variants of
control is due to a subtle difference in the interpretation of their input. For example, the
input for weighted voter control problems contains the total number of voters that can be
added/deleted and this number can always be seen as encoded in unary. Instead, in priced
control problems the input contains the budget that we can spend on adding/deleting vot-
ers. In our hardness proofs we rely on this budget being encoded in binary. (Yet, we should
mention that the same input-interpretation issue applies to the bribery setting.)

Our work opens several interesting research directions. For example, one could seek if
there are natural voting rules for which introducing prices increases the complexity of con-
trol problems. It is also interesting to consider the complexity of priced control in restricted
domains, such as the single-peaked domain or the single-crossing domain. Another potential
research direction is to consider approximation algorithms for the priced control problems.
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