Skip to main content
Log in

Convergence analysis of convex incremental neural networks

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Recently, a convex incremental algorithm (CI-ELM) has been proposed in Huang and Chen (Neurocomputing 70:3056–3062, 2007), which randomly chooses hidden neurons and then analytically determines the output weights connecting with the hidden layer and the output layer. Though hidden neurons are generated randomly, the network constructed by CI-ELM is still based on the principle of universal approximation. The random approximation theory breaks through the limitation of most conventional theories, eliminating the need for tuning hidden neurons. However, due to the random characteristic, some of the neurons contribute little to decrease the residual error, which eventually increase the complexity and computation of neural networks. Thus, CI-ELM cannot precisely give out its convergence rate. Based on Lee’s results (Lee et al., IEEE Trans Inf Theory 42(6):2118–2132, 1996), we first show the convergence rate of a maximum CI-ELM, and then systematically analyze the convergence rate of an enhanced CI-ELM. Different from CI-ELM, the hidden neurons of the two algorithms are chosen by following the maximum or optimality principle under the same structure as CI-ELM. Further, the proof process also demonstrates that our algorithms achieve smaller residual errors than CI-ELM. Since the proposed neural networks remove these “useless” neurons, they improve the efficiency of neural networks. The experimental results on benchmark regression problems will support our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70, 3056–3062 (2007)

    Article  Google Scholar 

  2. Lee, W.S., Bartlett, P.L., Williamson, R.C.: Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inf. Theory 42(6), 2118–2132 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ito, Y.: Approximation of functions on a compact set by finite sums of a sigmoid function without scaling. Neural Netw. 4, 817–826 (1991)

    Article  Google Scholar 

  4. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approxiamate any function. Neural Netw. 6, 861–867 (1993)

    Article  Google Scholar 

  5. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)

    Article  Google Scholar 

  6. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  7. Jones, L.K.: A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural networks. Ann. Stat. 20(1), 608–613 (1992)

    Article  MATH  Google Scholar 

  8. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoid function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kwok, T.-Y., Yeung, D.-Y.: Objective functions for training new hidden units in constructive neural networks. IEEE Trans. Neural Netw. 8(5), 1131–1148 (1997)

    Article  Google Scholar 

  10. Meir, R., Maiorov, V.E.: On the optimality of neural-network approximation using incremental algorithms. IEEE Trans. Neural Netw. 11(2), 323–337 (2000)

    Article  Google Scholar 

  11. Romero, E.: A new incremental method for function approximation using feed-forward neural networks. In: Proc. INNS-IEEE International Joint Conference on Neural Networks (IJCNN’2002), pp. 1968–1973. IEEE, Piscataway (2002)

    Google Scholar 

  12. Lavretsky, E.: On the geometric convergence of neural approximations. IEEE Trans. Neural Netw. 13(2), 274–282 (2002)

    Article  Google Scholar 

  13. Voxman, W.L., Roy, J., Goetschel, H.: Advanced Calculus: An Introduction to Modern Analysis. Marcel Dekker, New York (1981)

    MATH  Google Scholar 

  14. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. Lect. Notes Comput. Sci. 1524, 9–50 (1998)

    Article  Google Scholar 

  15. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 155. MIT, Cambridge (1997)

    Google Scholar 

  16. Platt, J.: A resource-allocating network for function interpolation. Neural Comput. 3, 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  17. Yingwei, L., Saratchandran, P., Sundararajan, N.: A sequental learning scheme for function approximation using minimal radial basis function (rbf) neural networks. Neural Comput. 9, 461–478 (1997)

    Article  MATH  Google Scholar 

  18. Blake, C., Merz, C.: UCI repository of machine learning databases. Department of Information and Computer Sciences, University of California, Irvine, USA. http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

The work is under the funding of Singapore MOE AcRF Tier 1 grant WBS No: R 252-000-221-112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Pung, H.K. Convergence analysis of convex incremental neural networks. Ann Math Artif Intell 52, 67–80 (2008). https://doi.org/10.1007/s10472-008-9097-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-008-9097-2

Keywords

Mathematics Subject Classifications (2000)

Navigation