Skip to main content
Log in

A new approach for pipeline time to digital converters based on analog interpolation and voltage amplification

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new approach for pipeline time-to-digital converters (TDCs) is introduced in this paper. The analog interpolation and voltage amplification methods for digitalizing the time intervals between the rising edges of two input signals are employed in the recommended converter. It consists of four 2.5b/stage time-to-digital converters and three voltage amplifiers (VAs) and will be a 9-bit pipeline TDC. Besides, a new VA is suggested in this paper. The delay cells such as delay line TDCs and vernier delay line TDCs (VDL–TDCs) are not used in this converter. Moreover, a triple-slope conversion is achieved by performing of the interpolation. Lots of advantages can be mentioned for the proposed converter such as; lower complexity, lower temperature sensitivity, power supply and process (PVT) variations, and higher accuracy in comparison with the time-to-digital converters which have been proposed previously. Furthermore, the differential non linearity (DNL) and the integral non linearity (INL) errors are decreased while the dynamic range, the time resolution, and the linear range of the TDC are developed significantly. The simulation results for INL and DNL in the proposed TDC are 0.83 LSB and 0.92 LSB, correspondingly. In addition, the time resolution is improved to 0.234 ps. To verify the validity of theoretical analysis, designing and simulation of the TDC is done in TSMC 45 nm CMOS technology. The comparison between the theoretical analysis and simulation results approves the superiorities and characteristics of the proposed TDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kościelnik, D., & Miśkowicz, M. (2012). Time-to-digital converters based on event-driven successive charge redistribution: A theoretical approach. Measurement, 45(10), 2511–2528.

    Article  Google Scholar 

  2. Chaberski, D. (2016). Time-to-digital-converter based on multiple-tapped-delay-line. Measurement, 89, 87–96.

    Article  Google Scholar 

  3. Rehman, S., Khafaji, M. M., Carta, C., & Ellinger, F. (2018). A 16 mW 250 ps double-hit-resolution input-sampled time-to-digital converter in 45-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(5), 562–566.

    Article  Google Scholar 

  4. Pan, W., Gong, G., Du, H., Li, H., & Li, J. (2012). High resolution distributed time-to-digital converter (TDC) in a White Rabbit network. Nuclear Instruments and Methods in Physics Research Section A, 738, 13–19.

    Article  Google Scholar 

  5. Caram, J. P., Galloway, J., & Kenney, J. S. (2018). A 9-bit 215 MS/s folding-flash time-to-digital converter based on redundant remainder number system in 45-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 85(1), 74–83.

    Article  Google Scholar 

  6. Nonis, R., Grollitsch, W., Santa, T., Cherniak, D., & Da Dalt, N. (2013). digPLL-Lite: A low-complexity, low-jitter fractional-N digital PLL architecture. IEEE Journal of Solid-State Circuits, 48(12), 3134–3145.

    Article  Google Scholar 

  7. Chen, P., Chen, C. C., Tsai, C. C., & Lu, W. F. (2005). A time-to-digital converter- based CMOS smart temperature sensor. IEEE Journal of Solid-State Circuits, 40(8), 1642–1648.

    Article  Google Scholar 

  8. Jeong, C. H., Kwon, C. K., Kim, H., Hwang, I. C., & Kim, S. W. (2013). Low-power, wide-range time-to-digital converter for all digital phase-locked loops. Electronics Letters, 49(2), 96–97.

    Article  Google Scholar 

  9. Han, Y., Lin, D., Geng, S., Xu, N., Rhee, W., Oh, T. Y., et al. (2013). All-digital PLL with ΔΣ DLL embedded TDC. Electronics Letters, 49(2), 93–94.

    Article  Google Scholar 

  10. Xing, N., Woo, J. K., Shin, W. Y., Lee, H., & Kim, S. (2010). A 14.6 ps resolution, 50 ns input-range cyclic time-to-digital converter using fractional difference conversion method. IEEE Transactions on Circuits and Systems I, 57(12), 3064–3072.

    Article  MathSciNet  Google Scholar 

  11. Lu, P., Andreani, P., & Liscidini, A. (2011). A 90 nm CMOS gated-ring oscillator-based Vernier time-to-digital converter for DPLLs. In Proceedings of the ESSCIRC (ESSCIRC) 2011, IEEE conference (pp. 459–462). Helsinki.

  12. Liscidini, A., Vercesi, L., & Castello, R. (2009). Time to digital converter based on a 2-dimensions Vernier architecture. In Custom integrated circuits conference (CICC) 2009, IEEE conference, San Jose (USA) (pp. 45–48).

  13. Hsiao, M. J., Huang, J. R., & Chang, T. Y. (2004). A built-in parametric timing measurement unit. IEEE Design and Test Computer, 21(4), 322–330.

    Article  Google Scholar 

  14. Kim, M., Lee, H., Woo, J. K., Xing, N., Kim, M. O., & Kim, S. (2011). A low-cost and low-power time-to-digital converter using triple-slope time stretching. IEEE Transaction on Circuits and Systems II, 58(3), 169–173.

    Article  Google Scholar 

  15. Chen, P., Chen, C. C., & Shen, Y. S. (2006). A low-cost low-power CMOS time-to-digital converter based on pulse stretching. IEEE Transaction on Nuclear Science, 53(4), 2215–2220.

    Article  Google Scholar 

  16. Kim, K., Yu, W., & Cho, S. (2014). A 9 bit, 1.12 ps resolution 2.5b/stage pipelined time-to-digital converter in 65 nm CMOS using time-register. IEEE Journal of Solid-State Circuits, 49(4), 1007–1016.

    Article  Google Scholar 

  17. Kim, J. S., Seo, Y. H., Suh, Y., Park, H. J., & Sim, J. Y. (2013). A 300-MS/s, 1.76-ps-resolution, 10-b asynchronous pipelined time-to-digital converter with on-chip digital background calibration in 0.13-µm CMOS. IEEE Journal of Solid-State Circuits, 48(2), 516–526.

    Article  Google Scholar 

  18. Kim, K. S., Kim, Y. H., Yu, W. S., & Cho, S. H. (2013). A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier. IEEE Journal of Solid-State Circuits, 48(4), 1009–1017.

    Article  Google Scholar 

  19. Rezvanyvardom, M., & Farshidi, E. (2015). Design of a novel pipeline time-to-digital converter based on dual-slope interpolation and time amplification. IETE Journal of Research, 61(3), 300–307.

    Article  Google Scholar 

  20. Rezvanyvardom, M., & Farshidi, E. (2015). A novel cyclic time-to-digital converter based on triple-slope interpolation and time amplification. Radioengineering Journal, 24(3), 800–807.

    Article  Google Scholar 

  21. Rezvanyvardom, M., & Farshidi, E. (2015). A new triple-slope pipelined time to digital converter by stretching of time. Journal of Circuits, Systems, and Computers, 24(9), 1–18.

    Article  Google Scholar 

  22. Rezvanyvardom, M., & Mirzaei, A. (2019). Analysis and design of a new 10-bit high accuracy and resolution TDC by elimination of offset voltage and parasitic capacitors effects. Journal of Circuits, Systems and Computers, 28(6), 1–20.

    Article  Google Scholar 

  23. Rezvanyvardom, M., Ghanavati Nejad, T., & Farshidi, E. (2014). A 5-bit time to digital converter using time to voltage conversion and integrating techniques for agricultural products analysis by Raman spectroscopy. Information Processing in Agriculture, 1(2), 124–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rezvanyvardom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezvanyvardom, M., Mirzaei, A. A new approach for pipeline time to digital converters based on analog interpolation and voltage amplification. Analog Integr Circ Sig Process 100, 671–682 (2019). https://doi.org/10.1007/s10470-019-01507-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01507-w

Keywords

Navigation