Skip to main content
Log in

Linearity improvement in a CMOS down-conversion active mixer for WLAN applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents an active down-conversion mixer for wireless local area network applications. The proposed down-conversion mixer is designed for 2–3 GHz radio frequency (RF) band and an intermediate frequency of 100 MHz using RF-TSMC CMOS 0.18 μm technology. A new fully differential Darlington cell is introduced in the RF transconductance stage to effectively suppress third-order nonlinearity. In addition, the conversion gain and noise performance of the proposed mixer are improved by using an active load and current bleeding technique. The proposed mixer has been simulated by Cadence Spectre-RF. Post-layout simulation results show the third-order input intercept point can be improved up to 12.5 dBm by optimum biasing of the Darlington cell. The proposed mixer achieves the high conversion gain of 14.5 dB and the low double side-band noise figure of 4.55 dB at the input frequency of 2.4 GHz. The mixer operates at the supply voltage of 1.8 V with power consumption of 17.4 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Razavi, B. (2014). RF microelectronics. New Sheli: Dorling Kindersley (India).

    Google Scholar 

  2. Caverly, R. H. (2007). CMOS RFIC design principles. Boston: Artech House.

    Google Scholar 

  3. Darabi, H., & Chiu, J. (2005). A noise cancellation technique in active RF-CMOS mixers. IEEE Journal of Solid-State Circuits, 40(12), 2628–2632.

    Article  Google Scholar 

  4. Ho, S. S., & Saavedra, C. E. (2010). A CMOS broadband low-noise mixer with noise cancellation. IEEE Transactions on Microwave Theory and Techniques, 58(5), 1126–1132.

    Article  Google Scholar 

  5. Mahmou, R., & Faitah, K. (2014). High linearity, low power RF mixer design in 65 nm CMOS technology. AEU-International Journal of Electronics and Communications, 68(9), 883–888.

    Article  Google Scholar 

  6. Kim, T., Kim, B., & Lee, K. (2004). Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors. IEEE Journal of Solid-State Circuits, 39(1), 223–229.

    Article  Google Scholar 

  7. Kia, H. B., & A’Ain, A. K. (2014). A high gain and low flicker noise CMOS mixer with low flicker noise corner frequency using tunable differential active inductor. Wireless Personal Communications, 79(1), 599–610.

    Article  Google Scholar 

  8. Liang, K., Lin, C., Chang, H., & Chan, Y. (2008). A new linearization technique for CMOS RF mixer using third-order transconductance cancellation. IEEE Microwave and Wireless Components Letters, 18(5), 350–352.

    Article  Google Scholar 

  9. Mollaalipour, M., & Miar-Naimi, H. (2013). An improved high linearity active CMOS mixer: Design and volterra series analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(8), 2092–2103.

    Article  MathSciNet  Google Scholar 

  10. Guo, B., Wang, H., & Yang, G. (2014). A wideband merged CMOS active mixer exploiting noise cancellation and linearity enhancement. IEEE Transactions on Microwave Theory and Techniques, 62(9), 2084–2091.

    Article  Google Scholar 

  11. Vahidfar, M., & Shoaei, O. (2008). A high IIP2 mixer enhanced by a new calibration technique for zero-IF receivers. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3), 219–223.

    Article  Google Scholar 

  12. Zhang, H., Fan, X., & Sinencio, E. S. (2009). A low-power, linearized, ultra-wideband LNA design technique. IEEE Journal of Solid-State Circuits, 44(2), 320–330.

    Article  Google Scholar 

  13. Cheng, W., Annema, A. J., Wienk, G. J., & Nauta, B. (2013). A flicker noise/IM3 cancellation technique for active mixer using negative impedance. IEEE Journal of Solid-State Circuits, 48(10), 2390–2402.

    Article  Google Scholar 

  14. Asghari, M., & Yavari, M. (2016). Using the gate–bulk interaction and a fundamental current injection to attenuate IM3 and IM2 currents in RF transconductors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(1), 223–232.

    Article  Google Scholar 

  15. Asghari, M., & Yavari, M. (2014). Using interaction between two nonlinear systems to improve IIP3 in active mixers. Electronics Letters, 50(2), 76–77.

    Article  Google Scholar 

  16. Wan, Q., Wang, C., & Sun, J. (2012). Design of a low voltage highly linear 2.4 GHz up-conversion mixer in 0.18 μm CMOS technology. Wireless Personal Communications, 70(1), 57–68.

    Article  Google Scholar 

  17. Ding, Y., & Harjani, R. (2005). High-linearity CMOS RF front-end circuits. New York, NY: Springer.

    Google Scholar 

  18. Asghari, M., & Yavari, M. (2016). An IIP3 enhancement technique for CMOS active mixers with a source-degenerated transconductance stage. Microelectronics Journal, 50(1), 44–49.

    Article  Google Scholar 

  19. Bhatt, D., Mukherjee, J., & Redoute, J. (2017). A self-biased mixer in 0.18 µm CMOS for an ultra-wideband receiver. IEEE Transactions on Microwave Theory and Techniques, 65(4), 1294–1302.

    Article  Google Scholar 

  20. Lee, J., Park, J., & Yun, T. (2017). Flicker noise improved CMOS mixer using feedback current bleeding. IEEE Microwave and Wireless Components Letters, 27(8), 730–732.

    Article  Google Scholar 

  21. Solati, P., & Yavari, M. (2019). A wideband high linearity and low-noise CMOS active mixer using the derivative superposition and noise cancellation techniques. Circuits, Systems, and Signal Processing, 38(1), 1–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Bijari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijari, A., Zandian, S. Linearity improvement in a CMOS down-conversion active mixer for WLAN applications. Analog Integr Circ Sig Process 100, 483–493 (2019). https://doi.org/10.1007/s10470-019-01482-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01482-2

Keywords

Navigation