Skip to main content
Log in

A High Gain and Low Flicker Noise CMOS Mixer with Low Flicker Noise Corner Frequency Using Tunable Differential Active Inductor

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents the design of a high conversion gain and low flicker noise down conversion CMOS double balanced Gilbert cell mixer using \(0.18\,\upmu \hbox {m}\) CMOS technology. The high conversion gain and low flicker noise mixer is implemented by using a differential active inductor (DAI) circuit and cross-coupled current injection technique within the conventional double-balanced Gilbert cell mixer. A cross-coupled current bleeding circuit is used to inject the current to the switching stage to decrease the flicker noise. Instead of spiral inductor, a DAI with high tunability of the inductor and quality factor is used to tune out the parasitic capacitance effect and decrease the leakage current that has a harmonic component and produce the flicker noise. By tuning the DAI, the flicker noise corner frequency is reduced to 150 Hz. The proposed circuit is simulated with Cadence Spectra and the simulation results shows the NF of 11.2 dB, conversion gain of 23.7 dB and IIP3 of \(-6\) dB for an RF frequency of 2.4 GHz. The excellent LO-RF, LO-IF, RF-LO and RF-IF isolations of \(-60, -110, -52\) and \(-64\) dB are achieved respectively. The total power consumption is 10.5 mW from a 1.8 V DC power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing, 44(6), 428–435. doi:10.1109/82.592569.

    Article  Google Scholar 

  2. Pokharel, R. K., Yano, Y., Abdelghany, M. A., Kanaya, H., & Yoshida, K. (2010). Design of high linearity low flicker noise 5.2 GHz down-conversion mixer for direct conversion receiver. In IEEE Asia pacific conference on circuits and systems (APCCAS), 2010 (Vol., no., pp. 64–67). doi:10.1109/APCCAS.2010.5774950.

  3. Park, J., Lee, C.-H., Kim, B.-S., & Laskar, J. (2006). Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4372–4380.

  4. Mirzaei, A., Darabi, H., Leete, J. C., & Chang, Y. (2010). Analysis and optimization of direct-conversion receivers with 25% duty-cycle current-driven passive mixers. IEEE Transactions on Circuits and Systems I Regular Papers, 57(9), 2353–2366. doi:10.1109/TCSI.2010.2043014.

    Article  MathSciNet  Google Scholar 

  5. Vahidfar, M. B., & Shoaei, O. (2008). A high IIP2 mixer enhanced by a new calibration technique for zero-IF receivers. IEEE Transactions on Circuits and Systems II Express Briefs, 55(3), 219–223. doi:10.1109/TCSII.2008.918998.

    Article  Google Scholar 

  6. Mirzaei, A., Darabi, H., Leete, J. C., Juan, K., & Yazdi, A. (2009). Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers. IEEE Journal of Solid-State Circuits, 44(10), 2678–2688. doi:10.1109/JSSC.2009.2027937.

    Article  Google Scholar 

  7. Zhou, S., & Chang, M.-C. F. (2005). A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver. IEEE Journal of Solid-State Circuits, 40(5), 1084–1093. doi:10.1109/JSSC.2005.845981.

    Article  Google Scholar 

  8. Wan, Q., Wang, C., et al. (2013). Design of a low voltage highly linear 2.4 GHz up-conversion mixer in 0.18 \(\mu \)m CMOS technology. Wireless Personal Communications, 70(1), 57–68.

    Article  Google Scholar 

  9. Wenyuan, L., Ji, C., & Zhigong, W. (2010). 2.4 GHz high linearity down-conversion mixer. In: International conference on microwave and millimeter wave technology (ICMMT), 2010 (Vol., no., pp. 2044–2047), 8–11 May 2010. doi:10.1109/ICMMT.2010.5525195.

  10. Chen, C.-H., Chiang, P.-Y., & Jou, C. F. (2009). A low voltage mixer with improved noise figure. Microwave and Wireless Components Letters IEEE, 19(2), 92–94. doi:10.1109/LMWC.2008.2011329.

    Article  Google Scholar 

  11. Ho, S. S. K., & Saavedra, C. E. (2011). A low-noise self-oscillating mixer using a balanced VCO load. IEEE Transactions on Circuits and Systems I Regular Papers, 58(8), 1705–1712. doi:10.1109/TCSI.2011.2106050.

    Article  MathSciNet  Google Scholar 

  12. Yoon, J., Kim, H., Park, C., Yang, J., Song, H., Lee, S., et al. (2008). A new RF CMOS Gilbert mixer with improved noise figure and linearity. IEEE Transactions on Microwave Theory and Techniques, 56(3), 626–631. doi:10.1109/TMTT.2008.916942.

    Article  Google Scholar 

  13. Kia, H. B., A’ain, A. K., Grout, I., & Kamisian, I. (2012). A reconfigurable low-noise amplifier using a tunable active inductor for multistandard receivers. In Circuits systems and signal processing, (Vol. 32, pp. 979–992). Berlin: Springer.

  14. Kia, H. B., & A’ain, A. K. (2012). A single-to-differential LNA using differential active inductor for GPS applications. Frequenz.

  15. Kia, H. B., A’ain, A. K., Grout, I. (2013). Wide tuning-range CMOS VCO based on a tunable active inductor. International Journal of Electronics.

  16. Xiao, H., Schaumann, R. (2007). A 5.4-GHz high-Q tunable active-inductor bandpass filter in standard digital CMOS technology. In Analog integrated circuits and signal processing, 2007–04-24 (Vol. 51, Issue: 1). Springer, Netherlands.

  17. Lai, Q.-T., Mao, J.-F. (2010). A new floating active inductor using resistive feedback technique. In IEEE MTT-S international microwave symposium digest (MTT), 2010 (Vol., no., pp. 1748–1751), 23–28 May 2010. doi:10.1109/MWSYM.2010.5517785.

  18. Lee, T. H. (2004). The design of CMOS radio-frequency integrated circuits. Cambridge: Cambridge University Press.

    Google Scholar 

  19. Terrovitis, M. T., & Meyer, R. G. (1999). Noise in current-commutating CMOS mixers. IEEE Journal of Solid-State Circuits, 34, 772–783.

    Article  Google Scholar 

  20. Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill.

    Google Scholar 

  21. Wei, B.-L., & Dai, Y.-J. (2012). Analysis and design of a 1.0-V CMOS mixer based on variable load technique. Microelectronics Journal, 43(12), 1003–1009. ISSN:0026–2692. doi:10.1016/j.mejo.2012.07.015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Babaei Kia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kia, H.B., A’ain, A.K. A High Gain and Low Flicker Noise CMOS Mixer with Low Flicker Noise Corner Frequency Using Tunable Differential Active Inductor. Wireless Pers Commun 79, 599–610 (2014). https://doi.org/10.1007/s11277-014-1875-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1875-z

Keywords

Navigation