Skip to main content
Log in

Fractional derivative of logarithmic function and its applications as multipurpose ASP circuit

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new approach to approximate the fractional order derivative of a logarithmic function using the Caputo definition. Further, this approximated fractional derivative has been used to conceptualize and design a multipurpose ASP (analog signal processing) circuit, by cascading the logarithmic amplifier with fractional order differentiator. The proposed multipurpose ASP circuit is capable to generate different kinds of signals (such as step signals with controlled amplitude, tangent and cotangent signals with controllable fractional power) for different inputs. Moreover, this circuit is also helpful to develop reciprocal, square root, cube root and nth-root of the input signal, up to some extent. Several types of input signals have been taken into consideration and the corresponding output responses are obtained by varying the order of differentiation in fractional sense. Numerical as-well-as circuit simulations have been done in MATLAB and PSpice environments to validate the theoretically obtained results. Further, hardware implantation has also been done to see the practical aspects of the proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Machado, J. T. (2015). Fractional order describing functions. Signal Processing. https://doi.org/10.1016/j.sigpro.2014.05.012.

    Google Scholar 

  2. Ortigueira, M. D., Ionescu, C. M., Machado, J. T., & Trujillo, J. J. (2015). Fractional signal processing and applications. Signal Processing. https://doi.org/10.1016/j.sigpro.2014.10.002.

    Google Scholar 

  3. Astola, J., Dougherty, E., Shmulevich, I., & Tabus, I. (2003). Genomic signal processing. Signal Processing. https://doi.org/10.1016/S0165-1684(02)00467-X.

    MATH  Google Scholar 

  4. Vogelsberger, M. A., Grubic, S., Habetler, T. G., & Wolbank, T. M. (2010). Using PWM-induced transient excitation and advanced signal processing for zero-speed sensorless control of AC machines. IEEE Transactions on Industrial Electronics, 57, 365–374. https://doi.org/10.1109/TIE.2009.2029578.

    Article  Google Scholar 

  5. Echeverria, V. T., Echeverria, H. M., Pontigo, F. A., Munita, D. S., & Fischer, E. (2016). Design of a prototype for selection and processing earthquake signals. IEEE Latin America Transactions, 14, 2618–2622. https://doi.org/10.1109/TLA.2016.7555228.

    Article  Google Scholar 

  6. Quintas, J., Teixeira, F. C., & Pascoal, A. (2016). Magnetic signal processing methods with application to geophysical navigation of marine robotic vehicles. OCEANS 2016 MTS/IEEE Monterey. https://doi.org/10.1109/OCEANS.2016.7761322.

    Google Scholar 

  7. Edwards, J. (2014). Signal processing: on the edge of astronomy’s new frontier [special reports]. IEEE Signal Processing Magazine, 31, 10–12. https://doi.org/10.1109/MSP.2014.2312176.

    Google Scholar 

  8. Papanikolopoulos, N. (2008). EvalWare: Signal processing for robotics [best of the web]. IEEE Signal Processing Magazine, 25, 154–157. https://doi.org/10.1109/MSP.2008.4408455.

    Article  Google Scholar 

  9. Cox, D., & Ambrose, J. (2014). Advantages of analog signal processing over FPGA and DSP in fuzing. Mixed Signal Integration. http://www.mix-sig.com/index.php/13-news/12-advantages-of-analog-signal-processing-over-fpga-and-dsp-in-fuzing. Accessed 14 Jan 2018.

  10. Xue, Y. (2016). Recent development in analog computation: A brief overview. Analog Integrated Circuits and Signal Processing, 86, 181. https://doi.org/10.1007/s10470-015-0668-y.

    Article  Google Scholar 

  11. Yadav, R., & Gupta, M. (2015). Approximations of higher-order fractional differentiators and integrators using indirect discretization. Turkish Journal of Electrical Engineering and Computer Sciences, 23, 666–680. https://doi.org/10.3906/elk-1212-137.

    Article  Google Scholar 

  12. Upadhyay, D. K., & Mishra, S. K. (2015). Realization of fractional order microwave low pass filter. International Journal of Microwave and Optical Technology (IJMOT), 10, 260–265.

    Google Scholar 

  13. Maundy, B., Elwakil, A., & Gift, S. (2010). On a multivibrator that employs a fractional capacitor. Analog Integrated Circuits and Signal Processing, 62, 99. https://doi.org/10.1007/s10470-009-9329-3.

    Article  Google Scholar 

  14. Ali, A. S., Radwan, A. G., & Soliman, A. M. (2013). Fractional order butterworth filter: Active and passive realizations. IEEE Journal on Emerging and Selected Topics in Circuit and Systems, 3, 346–354. https://doi.org/10.1109/JETCAS.2013.2266753.

    Article  Google Scholar 

  15. El-Khazali, R. (2015). On the biquadratic approximation of fractional-order Laplacian operators. Analog Integrated Circuits and Signal Processing, 82, 503. https://doi.org/10.1007/s10470-014-0432-8.

    Article  Google Scholar 

  16. Fouda, M. E., Soltan, A., Radwan, A. G., & Soliman, A. M. (2016). Fractional-order multi-phase oscillators design and analysis suitable for higher-order PSK applications. Analog Integrated Circuits and Signal Processing, 87, 301–312. https://doi.org/10.1007/s10470-016-0716-2.

    Article  Google Scholar 

  17. Bhatta, D. D. (2007). Few fractional order derivatives and their computations. International Journal of Mathematical Education in Science and Technology., 38(4), 449–460. https://doi.org/10.1080/00207390600967463.

    Article  MathSciNet  Google Scholar 

  18. Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.

    MATH  Google Scholar 

  19. Ortigueira, M. D., Machado, J. A. T., & Trujillo, J. J. (2017). Fractional derivatives and periodic functions. International Journal of Dynamics and Control, 5(1), 72–78. https://doi.org/10.1007/s40435-015-0215-9.

    Article  MathSciNet  Google Scholar 

  20. Ortigueira, M., & Machado, J. (2017). Which derivative? Fractal and Fractional, 1(1), 3. https://doi.org/10.3390/fractalfract1010003.

    Article  Google Scholar 

  21. Karci, A. (2016). Generalized fractional order derivatives, its properties and applications. Cornell University Library. https://arxiv.org/abs/1306.5672

  22. Ortigueira, M. D. (2011). Fractional calculus for scientists and engineers. Dordrecht: Springer.

    Book  MATH  Google Scholar 

  23. Das, S. (2011). Functional fractional calculus. India: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  24. Wen, D., Zhou, Y., & Li, X. A. (2015). Critical review: Coupling and synchronization analysis methods of eeg signal with mild cognitive impairment. Frontiers in Aging Neuroscience. https://doi.org/10.3389/fnagi.2015.00054.

    Google Scholar 

  25. Pejrolo, A., & Metcalfe, S. B. (2017). Creating sounds from scratch: A Practical guide to music synthesis for producers and composers. Oxford: Oxford University Press.

    Google Scholar 

  26. Aware, M. V., Junghare, A. S., Khubalkar, S. W., et al. (2017). Design of new practical phase shaping circuit using optimal pole–zero interlacing algorithm for fractional order PID controller. Analog Integrated Circuits and Signal Processing, 91, 131. https://doi.org/10.1007/s10470-016-0920-0.

    Article  Google Scholar 

  27. Germain, P., Piau, M., & Caillerie, D. (1989). Theoretical and applied mechanics. Amsterdam: Elsevier.

    MATH  Google Scholar 

  28. Podlubny, I. (1999). Fractional differential equations. Mathematics in science and engineering. San Diego: Academic Press.

    MATH  Google Scholar 

  29. Jumarie, G. (2013). On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling. Central European Journal of Physics, 11, 617–633. https://doi.org/10.2478/s11534-013-0256-7.

    Google Scholar 

  30. Zumbahlen, H. (2008). Linear Circuit Design Handbook. Norwood: Newnes/Elsevier. Analog Devices Inc.

    Google Scholar 

  31. Krishna, B. T., & Reddy, K. V. V. S. (2008). Active and passive realization of fractance device of order ½. Active and Passive Electronic Components, 2008, 5. https://doi.org/10.1155/2008/369421.

    Article  Google Scholar 

  32. Saatlo, A. N. (2016). High-precision CMOS analog computational circuits based on a new linearly Tunable OTA. Radioengineering, 25, 297–304. https://doi.org/10.13164/re.2016.0297.

    Article  Google Scholar 

  33. Gupta, M., Srivastava, R., & Singh, U. (2014). Low voltage floating gate MOS transistor based differential voltage squarer. Cairo: Hindawi Publishing Corporation. https://doi.org/10.1155/2014/357184.

    Book  Google Scholar 

  34. Martin, A. J. L., & Carlosena, A. (2000). Design of MOS-translinear multiplier/dividers in analog VLSI. VLSI Design. https://doi.org/10.1155/2000/21852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Gupta, M. & Upadhyay, D.K. Fractional derivative of logarithmic function and its applications as multipurpose ASP circuit. Analog Integr Circ Sig Process 100, 377–387 (2019). https://doi.org/10.1007/s10470-018-1328-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1328-9

Keywords

Navigation