Skip to main content
Log in

On a multivibrator that employs a fractional capacitor

  • MIXED SIGNAL LETTER
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The simple free running multivibrator built around a single fractional capacitor is examined in this letter. Equations for the oscillation frequency of the multivibrator are derived taking into account the positive feedback factor around the multivibrator. We show that the use of the fractional capacitance allows the multivibrator to have very high frequencies of oscillation for reasonable time constants used. PSPICE simulation and experimental results demonstrate the analysis with an approximation to a fractional capacitor that yields a result, which is at least 1000 times in frequency compared to if a normal capacitor of the same value was employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Carlson, G. E., & Halijak, C. A. (1964). Approximation of fractional capacitors (1/s)1/n by regular newton process. IEEE Transactions on Circuit Theory CT, 11(2), 210–213.

    Google Scholar 

  2. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples. International Journal of Circuit Theory and Applications, 36, 473–492.

    Article  Google Scholar 

  3. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). First-order filters generalized to the fractional domain. Journal of Circuits, Systems and Computers, 17(1), 55–66.

    Article  Google Scholar 

  4. Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing (USA) 53(9), 802 – 806.

    Article  Google Scholar 

  5. Jesus, I. S., Machado, J. A. T., Cunha, J. B., & Silva, M. F. (2006). Fractional order electrical impedance of fruits and vegetables. In Proceedings of the IASTED international conference on Modelling, Identification, and Control, MIC, Strony, pp. 489–494.

  6. Jesus, I. S., MacHado, J. A. T., & Cunha, J. B. (2008). Fractional electrical impedances in botanical elements. JVC/Journal of Vibration and Control, 14(9–10), 1389–1402.

    Article  Google Scholar 

  7. Machado, J. A. T., Jesus, I. S., Galhano, A., & Cunha, J. B. (2006). Fractional order electromagnetics. Signal Processing, 86(10), 2637–2644.

    Article  MATH  Google Scholar 

  8. Nakagawa, M., & Sorimachi, K. (1992). Basic characteristics of a fractance device. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences (Japan), E75-A(12), 1814–1819.

    Google Scholar 

  9. Ahmad, W., El-khazali, R., & Elwakil, A. S. (2001). Fractional-order wien-bridge oscillator. Electronics Letters, 37(18), 1110–1112.

    Article  Google Scholar 

  10. Hartley, T. T., & Lorenzo, C. F. (1998). A solution to the fundamental linear fractional order differential equation. Raport instytutowy 208693, National Aeronautics and Space Administration (NASA).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Maundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maundy, B., Elwakil, A. & Gift, S. On a multivibrator that employs a fractional capacitor. Analog Integr Circ Sig Process 62, 99–103 (2010). https://doi.org/10.1007/s10470-009-9329-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9329-3

Keywords

Navigation