Skip to main content
Log in

Exploitation of the ambient noise for the structural health monitoring of bars and tubes

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Image processing is a very vast field that includes both IT and applied mathematics. It is a discipline that studies the improvement and transformations of digital images hence permitting the improvement of the quality of these images and the extraction of information. The comparison of digital images is a paramount issue that has been discussed in several researches because of its various applications especially in the field of control and surveillance such as the Structural Health Monitoring using acoustic waves. In this study we will present an experimental study conducted on a bar and a tube in order to show the constant possibility of performing a structural health monitoring in a medium by studying the ambient noise present therein. Finally, a comparison algorithm described in a previous work (Hourany et al. in Leban Sci J 17(2):177–192, 2016) will be validated in order to show the influence of the presence of a defect in the structure on the cross-correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Abou Leyla, N., Moulin, E., Assaad, J., Grondel, S., & Poussot, P. (2008). Structural health monitoring using cross-correlation of an ambient noise field. The Journal of the Acoustical Society of America, 123(5), 3698.

    Article  Google Scholar 

  2. Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Itelligence, 22(12), 1349–1380.

    Article  Google Scholar 

  3. Baudrier, E., Millon, G., Nicolier, F., & Ruan, S. (2004). A new similarity measure using Hausdorff distance map. In ICIP ‘04. 2004 (Vol. 1, pp. 667–672). IEEE.

  4. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  5. Bigand, A., & Colot, O. (2010). Fuzzy filter based on interval-valued fuzzy sets for image filtering. Fuzzy Sets and Systems, 161(1), 96–117.

    Article  MathSciNet  Google Scholar 

  6. Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.

    Article  Google Scholar 

  7. Hourany, K., Benmeddour, F., Moulin, E., Assaad, J., & Zaatar, Y. (2016). Calculation of the similarity rate between images based on the local minima present therein. Lebanese Science Journal, 17(2), 177–192.

    Article  Google Scholar 

  8. Snieder, R., Sheiman, J., & Calvert, R. (2006). Equivalence of the virtual-source method and wave-field deconvolution in seismic interferometry. Physical Review E, 73(6), 066620.

    Article  Google Scholar 

  9. Shapiro, N. M., et al. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618.

    Article  Google Scholar 

  10. Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), 1-4.

    Article  Google Scholar 

  11. Sabra, K. G., & Dowling, D. R. (2004). Blind deconvolution in ocean waveguides using artificial time reversal. The Journal of the Acoustical Society of America, 116(1), 262–271.

    Article  Google Scholar 

  12. Sabra, K. G., Roux, P., & Kuperman, W. A. (2005). Time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide. Journal of the Acoustical Society of America, 117(1), 164–174.

    Article  Google Scholar 

  13. Sabra, K. G., Roux, P., & Kuperman, W. (2005). Emergence rate of the time-domain Green’s function from the ambient noise cross-correlation function. The Journal of the Acoustical Society of America, 118(6), 3524–3531.

    Article  Google Scholar 

  14. Farrar, C., & James, G., III. (1997). System identification from ambient vibration measurements on a bridge. Journal of Sound and Vibration, 205(1), 1–18.

    Article  Google Scholar 

  15. Nagayama, T., et al. (2005). Structural identification of a nonproportionally damped system and its application to a full-scale suspension bridge. Journal of Structural Engineering, 131(10), 1536–1545.

    Article  Google Scholar 

  16. Snieder, R., & Şafak, E. (2006). Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America, 96(2), 586–598.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Lebanese University for the financial support of this work. The authors thank the National Council for Scientific Research (Lebanese CNRS) for the financing of the thesis of Mr. Karl Hourany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zaatar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hourany, K., Benmeddour, F., Moulin, E. et al. Exploitation of the ambient noise for the structural health monitoring of bars and tubes. Analog Integr Circ Sig Process 96, 293–302 (2018). https://doi.org/10.1007/s10470-018-1195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1195-4

Keywords

Navigation