Skip to main content
Log in

A CMOS differential receiver dedicated to nuclear magnetic resonance applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper examines the design and implementation of a 21 MHz CMOS differential or so-called dual-path receiver (DPR) dedicated to nuclear magnetic resonance (NMR) spectrometer. This receiver features a CMOS chip incorporated with two mini-Coils and other circuitries. Herein we discuss the design and implementation of the DPR chip as the core part of this new NMR system. The DPR consists of two differential low-noise amplifiers, voltage buffers, phase shifters and variable gain amplifiers in order to accurately cancel the effect of the background NMR signal. We put forward the design and analysis of the DPR chip and thereafter demonstrate and discuss the simulation and experimental results. Based on these results, the front-end receiver achieves a voltage gain of 80 dB at a low input referred noise of 2.7 nV/√Hz. The chip is designed in a 0.13-µm CMOS technology and occupies an area of 1 mm × 2 mm. As per experimental results, this device can be used n the future low-cost NMR technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Rosenstein, J. K., et al. (2012). Integrated nanopore sensing platform with sub-microsecond temporal resolution detection. Nature Methods, 9, 487–492.

    Article  Google Scholar 

  2. Chen, Y., et al. (2012). CMOS high density electrical impedance biosensor array for tumor cell detection. Sensors and Actuators B: Chemical, 173, 903–907.

    Article  Google Scholar 

  3. Ahmadi, M. M., et al. (2009). A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transactions on Biomedical Circuits and Systems, 3, 169–180.

    Article  Google Scholar 

  4. Scott, A., et al. (2013). A microfluidic microelectrode array for simultaneous electrophysiology, chemical stimulation, and imaging of brain slices. Lab on a Chip, 13, 527–535.

    Article  Google Scholar 

  5. Ghafar-Zadeh, E., et al. (2010). Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Transactions on Biomedical Circuits and Systems, 4(4), 232–238.

    Article  Google Scholar 

  6. Eltoukhy, H., et al. (2006). A 0.18-µm CMOS bioluminescence detection lab-on-chip. IEEE Journal of Solid-State Circuits, 41, 651–662.

    Article  Google Scholar 

  7. Hall, D. A., et al. (2013). A 256 pixel magnetoresistive biosensor microarray in 0.18 µm CMOS. IEEE Journal of Solid-State Circuits, 48, 1290–1301.

    Article  Google Scholar 

  8. Stangi, C., et al. (2006). CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement. IEEE Journal of Solid-State Circuits, 41, 2956–2964.

    Article  Google Scholar 

  9. Ghafar-Zadeh, E., et al. (2007). A hybrid microfluidic/CMOS capacitive sensor dedicated to lab-on-chip applications. IEEE Transactions on Biomedical Circuits and Systems, 1(4), 270–277.

    Article  Google Scholar 

  10. Huang, Y., et al. (2011). Lab-on-CMOS integration of m. JM Rothberg et al. “An integrated semiconductor device enabling non-optical genome sequencing”. Nature, 475, 345–372.

    Article  Google Scholar 

  11. Sun, N. (2011). Palm NMR and 1-Chip NMR. IEEE Journal of Solide State Circuits, 46, 1.

    Article  Google Scholar 

  12. Pellecchia, M., Sem, D. S., & Wüthrich, K. (2002). NMR in drug discovery. Nature Reviews Drug Discovery, 1, 211–219.

    Article  Google Scholar 

  13. Cabrita, L. D., Hsu, S.-T. D., Launay, H., Dobson, C. M., & Christodoulou, J. (2009). Probing ribosome–nascent chain complexes produced in vivo by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 106, 22239–22244.

    Article  Google Scholar 

  14. Rutkowska, A., Beerbaum, M., Rajagopalan, N., Fiaux, J., Schmieder, P., Kramer, G., et al. (2009). Large-scale purification of ribosome–nascent chain complexes for biochemical and structural studies. FEBS Letters, 583, 2407–2413.

    Article  Google Scholar 

  15. Maguire, Y., et al. (2007). Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance. PNAS, 104, 9198–9203.

    Article  Google Scholar 

  16. Lee, H., Sun, E., Ham, D., & Weissleder, R. (2008). Chip-NMR biosensor for detection and molecular analysis of cells. Nature Medicine, 14, 869–874.

    Article  Google Scholar 

  17. Hoult, D. I., & Richards, R. E. (1969). The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance, 24(1), 71–85.

    Google Scholar 

  18. Haken, R., et al. (2000). Anisotropy in tendon investigation in vivo by a portable NMR scanner, the NMR-MOUSE. Journal Magnetic Resonance, 144, 195–199.

    Article  MathSciNet  Google Scholar 

  19. Coil-on-a-chip, Broker Inc. https://www.bruker.com/products/mr/nm/probes/probes/coil-on-a-chip/overview.html.

  20. Pourmodheji H., et al. (2015). Dual-path NMR receiver using double transceiver microcoils. IEEE EMBC.

  21. Pourmodheji H., et al. (2015) Active nuclear magnetic resonance probe: A new multidiciplinary approach toward highly sensitive biomolecoular spectroscopy. IEEE Conference, ISCAS.

  22. Anders, J., Chiaramonte, G., SanGiorgio, P., & Boero, G. (2009). A single-chip array of NMR receivers. Journal of Magnetic Resonance, 201, 239–249.

    Article  Google Scholar 

  23. Cherifi, T., Abouchi, N., Lu, G. N., Bouchet-Fakri, L., Quiquerez, L., Sorli, B., et al. (2005). A CMOS microcoil-associated preamplifier for NMR spectroscopy. IEEE Transaction on Circuits and Systems, 52(12), 2576–2583.

    Article  Google Scholar 

  24. Anders, J., Handwerker, J., Ortmanns, M., & Boero, G. (2013). A fully-integrated detector for NMR microscopy in 0.13 μm CMOS. In Solid-State Circuits Conference (A-SSCC), 2013 IEEE Asian (pp. 437–440).

  25. Eichmann, C., Preissler, S., Riek, R., & Deuerling, E. (2010). Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 107, 9111–9116.

    Article  Google Scholar 

  26. Benesi, A. J. (2015). A primer of NMR theory with calculation in mathematica Google Books.

  27. Krojanski, H. G., Lambert, J. R., Gerikalan, Y., Suter, D., & Hergenröder, R. (2008). Microslot NMR probe for metabolomics studies. Analytical Chemistry, 80, 8668–8672.

    Article  Google Scholar 

  28. Wensink, H., Benito-Lopez, F., Hermes, D. C., Verboom, W., Gardeniers, H. J., Reinhoudt, D. N., et al. (2005). Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR. Lab on a Chip, 5, 280–284.

    Article  Google Scholar 

  29. Kong, T. F., Peng, W. K., Luong, T. D., Nguyen, N.-T., & Han, J. (2012). Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab on a Chip, 12, 287–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghafar-Zadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmodheji, H., Ghafar-Zadeh, E. & Magierowski, S. A CMOS differential receiver dedicated to nuclear magnetic resonance applications. Analog Integr Circ Sig Process 91, 97–109 (2017). https://doi.org/10.1007/s10470-016-0901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0901-3

Keywords

Navigation