Skip to main content
Log in

Analysis of MIMO-OFDM system impaired by nonlinear dual-band power amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a theoretical analysis of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing in the presence of nonlinear dual-band power amplifiers. A two-dimensional memory polynomial model is used to describe the dual-band power amplifier. It is analytically shown that the effect of nonlinearity impairment in the transmitter can be modeled by a complex coefficient and a nonlinear additive noise. An analytical formulation is provided for symbol error rate (SER) of this system considering a frequency selective MIMO channel. The experimental results have been deployed to extract a realistic model for a dual-band amplifier. Also, the model of the linearized power amplifier has been extracted after applying digital pre-distortion (DPD). The proposed model is validated by simulation for 2 × 2 and 2 × 4 MIMO systems. The results show that the analytical model maps well onto the simulation. Also, it is shown that the DPD is able to compensate for the nonlinearity effect of the dual-band power amplifier as the SER is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paulraj, A. J., Gore, D. A., Nabar, R. U., & Bolcskei, H. (2004). An overview of MIMO communications—A key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218.

    Article  Google Scholar 

  2. Van den Bos, C., Kouwenhoven, M. H. L., & Serdijn, W. A. (2001). Effect ofsmooth nonlinear distortion on OFDM symbol error rate. IEEE Transactions on Communications, 49(9), 1510–1514.

    Article  MATH  Google Scholar 

  3. Chen, B., Yang, C., & Liao, W. (2012). Robust fast time-varying multipath fading channel estimation and equalization for MIMO-OFDM systems via a fuzzy method. IEEE Transactions on Vehicular Technology, 61(4), 1599–1609.

    Article  Google Scholar 

  4. Roblin, P., Myoung, S. K., Chaillot, D., Kim, Y. G., Fathimulla, A., Strahler, J., et al. (2008). Frequency-selective predistortion linearizationof RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 56(1), 65–76.

    Article  Google Scholar 

  5. Bohara, V. A., & Ting, S. H. (2009). Analytical performance of orthogonal frequency division multiplexing systems impaired by a non-linear high power amplifier with memory. IET Communications, 3(10), 1659–1666.

    Article  Google Scholar 

  6. Vaezi, A., Abdipour, A., & Mohammadi, A. (2012). Nonlinear analysis of microwave amplifiers excited by multicarrier modulated signals using envelop transient technique. Analog Integrated Circuits and signal Processing, 72, 313–323.

    Article  Google Scholar 

  7. Yiming, L., O’Droma, M., & Ye, J. (2014). A practical analysis of performance optimization in OSTBC based nonlinear MIMO-OFDM systems. IEEE Transactions on Communications, 62(3), 930–938.

    Article  Google Scholar 

  8. Iofedov, I., & Wulich, D. (2015). MIMO–OFDM with nonlinear power amplifiers. IEEE Transactions on Communications, 63(12), 4894–4904.

    Article  Google Scholar 

  9. Hemesi, H., Abdipour, A., & Mohammadi, A. (2013). Analytical modeling of MIMO-OFDM system in the presence of nonlinear power amplifier with memory. IEEE Transactions on Communications, 61, 155–163.

    Article  Google Scholar 

  10. Hemesi, H., Abdipour, A., & Mohammadi, A. (2014). Statistical modelling of a non-linear high-power amplifier with memory in multi-input-multi-output orthogonal frequency division multiplexing systems. IET Communications, 8(5), 714–721.

    Article  Google Scholar 

  11. Bassam, S. A., Helaoui, M., & Ghanouchi, F. M. (2009). Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitter. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1119–1128.

    Article  Google Scholar 

  12. Amiri, M. V., Bassam, S. A., Helaoui, M., & Ghannouchi, F. M. (2013). Estimation of crossover DPD using orthogonal polynomials in fixed point arithmetic. AEU International Journal of Electronics and Communications, 67(11), 905–909.

    Article  Google Scholar 

  13. Amin, S., Landin, P. N., Handel, P., & Ronnow, D. (2014). Behavioral modeling and linearization of crosstalk and memory effects in RF MIMO transmitters. IEEE Transactions on Microwave Theory and Techniques, 62(4), 810–823.

    Article  Google Scholar 

  14. Fu, Z., Anttila, L., Abdelaziz, M., Valkama, M., & Wyglinski, A. M. (2015). Frequency-selective digital predistortion for unwanted emission reduction. IEEE Transactions on Communications, 63(1), 254–267.

    Article  Google Scholar 

  15. Bassam, A., Helaoui, M., & Ghannouchi, F. M. (2011). 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 59(10), 2547–2553.

    Article  Google Scholar 

  16. Younes, M., & Ghannouchi, F. M. (2013). On the modeling and linearization of a concurrent dual-band transmitter exhibiting nonlinear distortion and hardware impairments. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3055–3068.

    Article  Google Scholar 

  17. Kiessling, M., & Speidel, J. (2003). A nalytical performance of MIMO zero-forcing receivers in correlated ray leigh fading environments. Processing IEEE Workshop SPAWC, 2003, 383–387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolali Abdipour.

Appendices

Appendix 1: Derivation for complex coefficients, \(\mu_{b q,k}^{i}\)

In order to calculate \(\mu_{b q,k}^{i}\), from (11) we have:

$$E\left[ {\beta_{bq,k}^{i} a_{bk}^{i*} } \right] = \mu_{bq,k}^{i} P_{ib}$$
(22)

In (22), \(\beta_{b q,k}^{i}\) and \(a_{b k}^{i}\) can be replaced by (10) and its IDFT representation, respectively. Thus,

$$E\left[ {\beta_{q,k}^{i} a_{k}^{i *} } \right] = E\left[ {\mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{n = 0}^{N - 1} C_{bp, p1,q }^{i} x_{b\left[ n \right]}^{i} \left| {x_{b\left[ n \right] }^{i} } \right|^{p - p1} \left| {x_{bb\left[ n \right]}^{i} } \right|^{p1} e^{ - j2\pi kn/N} \times \sum\limits_{v = 0}^{N - 1} {\left( {x_{b\left[ \upsilon \right]}^{i} } \right)^{ * } e^{j2\pi k\upsilon /N} } } \right]$$
(23)

Also, it can be rewritten as,

$$E\left[ {\beta_{q,k}^{i} a_{k}^{i *} } \right] = E\left[ {\mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{n = 0}^{N - 1} \mathop \sum \limits_{\upsilon = 0}^{N - 1} C_{bp, p1,q }^{i} x_{b\left[ n \right] }^{i} (x_{b \left[ \upsilon \right]}^{i} )^{ *} \left| {x_{b \left[ n \right]}^{i} } \right|^{p - p1} \left| {x_{bb \left[ n \right]}^{i} } \right|^{p1} e_{{}}^{{ - j2\pi k\left( {n - \upsilon } \right)/N}} } \right]$$
(24)

As \(x_{b \left[ \upsilon \right]}^{i}\) and \(x_{b \left[ n \right]}^{i}\) are Gaussian random variable, they are independent when \(n \ne \upsilon\). So the expectation value is zero unless \(n = \upsilon\) therefore,

$$E\left[ {\beta_{q,k}^{i} a_{k}^{i*} } \right] = E\left[ {\mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{n = 0}^{N - 1} \mathop \sum \limits_{\upsilon = 0}^{N - 1} C_{bp, p1, q }^{i} x_{b \left[ n \right]}^{i} (x_{b \left[ n \right]}^{i} )^{*} \left| {x_{b \left[ n \right]}^{i} } \right|^{p - p1} \left| {x_{bb \left[ n \right]}^{i} } \right|^{p1} } \right]$$
(25)
$$E\left[ {\beta_{q,k}^{i} a_{k}^{i *} } \right] = E\left[ {\mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{n = 0}^{N - 1} \mathop \sum \limits_{\upsilon = 0}^{N - 1} C_{bp, p1, q }^{i} \left| {x_{b \left[ n \right]}^{i} } \right|^{p - p1 + 2} \left| {x_{bb \left[ n \right]}^{i} } \right|^{p1} } \right]$$
(26)

Considering the central momentum of Rayleigh- distributed random variable, \(E\left[ { \left| x \right|^{p} } \right] = \sigma^{p} 2^{{\frac{p}{2}}} \varGamma \left( {1 + \frac{p}{2}} \right)\) where \(\sigma^{2} = P_{i b} /\left( {2N} \right)\), (22) can be written as:

$$\mu_{b q,k}^{i} P_{b i} = N\mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} C_{b p, p1, q }^{i} \left[ {\varGamma \left( {2 + \frac{p - p1}{2}} \right)\varGamma \left( {1 + \frac{p}{2}} \right)\left( {{\raise0.7ex\hbox{${P_{b i} }$} \!\mathord{\left/ {\vphantom {{P_{b i} } N}}\right.\kern-0pt} \!\lower0.7ex\hbox{$N$}}} \right)^{{\frac{p - p1}{2} + 1}} \left( {{\raise0.7ex\hbox{${P_{bb i} }$} \!\mathord{\left/ {\vphantom {{P_{bb i} } N}}\right.\kern-0pt} \!\lower0.7ex\hbox{$N$}}} \right)^{{\frac{p1}{2}}} } \right]$$
(27)

Consequently (12) is extracted.

Appendix 2: Derivation for Mean of Nonlinear Noise

In this part we prove that the mean of nonlinear noise, \(\eta _{b k}^{i}\), is zero. For this purpose, we have,

$$E\left[ {\eta _{b k}^{i} } \right] = E\left[ {\beta_{b k}^{i} } \right] - \mu_{b k}^{i} E\left[ { a_{b k}^{i} } \right]$$
(28)

As \(a_{b k}^{i}\) is a zero mean random variable, \(E\left[ {\eta _{b k}^{i} } \right] = E\left[ {\beta_{b k}^{i} } \right]\)

Also, \(\beta_{b k}^{i} = \mu_{b k}^{i} a_{b k}^{i} + \eta _{b k}^{i}\) where \(\beta_{b k}^{i} = \mathop \sum \limits_{q = 0}^{Q - 1} \beta_{b q,k}^{i} e_{{}}^{ - j2\pi kq/N}\), So,

$$\beta_{b k}^{i} = \mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{n = 0}^{N - 1} \varphi_{b p, p1 }^{i} e_{{}}^{ - j2\pi kn/N} x_{b \left[ n \right]}^{i} \left| {x_{b \left[ n \right]}^{i} } \right|^{p - p1} \left| {x_{bb \left[ n \right]}^{i} } \right|^{p1}$$
(29)

Where \(\varphi_{p,k}^{i} = \mathop \sum \limits_{q = 0}^{Q - 1} C_{b p, p1, q }^{i} e_{{}}^{ - j2\pi kq/N}\)

$$E\left[ {\beta_{b k}^{i} } \right] = \mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{n = 0}^{N - 1} \varphi_{b p, p1 }^{i} e_{{}}^{ - j2\pi kn/N} E\left[ {x_{b \left[ n \right]}^{i} \left| {x_{b \left[ n \right]}^{i} } \right|^{p - p1} \left| {x_{bb \left[ n \right]}^{i} } \right|^{p1} } \right]$$
(30)

Since \(x_{b \left[ n \right]}^{i} \left| {x_{b \left[ n \right]}^{i} } \right|^{p - p1} \left| {x_{bb \left[ n \right]}^{i} } \right|^{p1}\) is circularly symmetric, its expectation value is zero. So, \(E\left[ {\beta_{b k}^{i} } \right] = 0\)

Appendix 3: Derivation for Variance of Nonlinear Noise

In order to calculate the variance of the nonlinear noise, starting from \(\beta_{b k}^{i} = \mu_{b k}^{i} a_{b k}^{i} + \eta _{b k}^{i}\), and considering \(\eta _{b k}^{i}\) as a zero-mean random variable, we have,

$$\sigma_{NLbk }^{2i} = E\left[ { \left| {\eta _{bk}^{i} } \right|^{2} } \right] = E\left[ { \left| {\beta_{bk}^{i} } \right|^{2} } \right] - \left| {\mu_{bk}^{i} } \right|^{2} P_{b i}$$
(31)

where \(\left| {\beta_{bk}^{i} } \right|^{2} = \left( {\beta_{bk}^{i} } \right)\left( {\beta_{bk}^{i} } \right)^{*}\). By replacing \(\beta_{b k}^{i}\) from (29),

$$\begin{aligned} E\left[ { \left| {\beta_{b k}^{i} } \right|^{2} } \right] = \mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{{n_{1} = 0}}^{N - 1} \varphi_{b p, p1 }^{i} e^{{ - j2\pi kn_{1} /N}} E\left[ {x_{{b \left[ {n_{1} } \right]}}^{i} \left| {x_{{b \left[ {n_{1} } \right]}}^{i} } \right|^{p - p1} \left| {x_{{bb \left[ {n_{1} } \right]}}^{i} } \right|^{p1} } \right] \hfill \\ \times \mathop \sum \limits_{pp = 0}^{P - 1} \mathop \sum \limits_{pp1 = 0}^{pp} \mathop \sum \limits_{{n_{2} = 0}}^{N - 1} \varphi_{b pp, p p1 }^{i*} e_{{}}^{{ + j2\pi kn_{2} /N}} E\left[ {x_{{b \left[ {n_{2} } \right]}}^{i*} \left| {x_{{b \left[ {n_{2} } \right]}}^{i} } \right|^{pp - pp1} \left| {x_{{bb \left[ {n_{2} } \right]}}^{i} } \right|^{pp1} } \right] \hfill \\ \end{aligned}$$
(32)

(32) can be rearranged as,

$$\begin{aligned} \left| {\beta_{k}^{i} } \right|^{2} = \mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{{n_{1} = 0}}^{N - 1} \mathop \sum \limits_{pp = 0}^{P - 1} \mathop \sum \limits_{pp1 = 0}^{pp} \mathop \sum \limits_{{n_{2} = 0}}^{N - 1} \varphi_{bp, p1 }^{i} \varphi_{bpp, pp1 }^{i*} E[ e_{{}}^{{ - j2\pi k(n_{1} - n_{2} )/N}} \hfill \\ \times x_{{b \left[ {n_{1} } \right]}}^{i} \left| {x_{{b \left[ {n_{1} } \right]}}^{i} } \right|^{p - p1} \left| {x_{{bb \left[ {n_{1} } \right]}}^{i} } \right|^{p1} x_{{b \left[ {n_{2} } \right]}}^{i*} \left| {x_{{b \left[ {n_{2} } \right]}}^{i} } \right|^{pp - pp1} \left| {x_{{bb \left[ {n_{2} } \right]}}^{i} } \right|^{pp1} ] \hfill \\ \end{aligned}$$
(33)

The expectation value is zero unless \(n_{2} = n_{1} = n\), so,

$$E\left[ { \left| {\beta_{bk}^{i} } \right|^{2} } \right] = N \times E\left[ {\mathop \sum \limits_{n}^{N - 1} \mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{pp = 0}^{P - 1} \mathop \sum \limits_{pp1 = 0}^{pp} \varphi_{b p, p1 }^{i} \varphi_{b pp, p p1 }^{i*} \left| {x_{b \left[ n \right]}^{i} } \right|^{{p + pp - \left( {p1 + pp1} \right) + 2}} \left| {x_{bb \left[ n \right]}^{i} } \right|^{p1 + pp1} } \right]$$
(34)

and,

$$\begin{aligned} E\left[ { \left| {\beta_{b k}^{i} } \right|^{2} } \right] = N \times \mathop \sum \limits_{n}^{N - 1} \mathop \sum \limits_{p = 0}^{P - 1} \mathop \sum \limits_{p1 = 0}^{p} \mathop \sum \limits_{pp = 0}^{P - 1} \mathop \sum \limits_{pp1 = 0}^{pp} \varphi_{b p, p1 }^{i} \varphi_{b pp, p p1 }^{i*} \hfill \\ \times \varGamma \left( {2 + \frac{{p + pp - \left( {p1 + pp1} \right)}}{2}} \right)\varGamma \left( {1 + \frac{p1 + pp1}{2}} \right)\left( {{\raise0.7ex\hbox{${P_{b i} }$} \!\mathord{\left/ {\vphantom {{P_{b i} } N}}\right.\kern-0pt} \!\lower0.7ex\hbox{$N$}}} \right)^{{\frac{{p + pp - \left( {p1 + pp1} \right) + 2}}{2}}} \left( {{\raise0.7ex\hbox{${P_{bb i} }$} \!\mathord{\left/ {\vphantom {{P_{bb i} } N}}\right.\kern-0pt} \!\lower0.7ex\hbox{$N$}}} \right)^{{\frac{p1 + pp1}{2}}} \hfill \\ \end{aligned}$$
(35)

Therefore, the (14) is extracted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaezi, A., Abdipour, A., Mohammadi, A. et al. Analysis of MIMO-OFDM system impaired by nonlinear dual-band power amplifiers. Analog Integr Circ Sig Process 89, 205–212 (2016). https://doi.org/10.1007/s10470-016-0821-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0821-2

Keywords

Navigation