Skip to main content
Log in

Electronically tunable memristor emulator circuit

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, memristor emulator circuit which is built with off the shelf electronic devices is presented. It consists of three operational transconductance amplifiers (OTA) and four second generation current conveyors (CCII). Using OTA offers an extra control parameter, operational transconductance parameter (gm), in addition to frequency (f) and amplitude value of voltage across emulator (v m ). Since gm is proportional to current flowing through the bias terminal of OTA, it is possible to change the memristance variation via a simple change of amplitude value. Since gm parameter is adjustable via an external dc voltage/current source, the memristance of presented emulator circuit is electronically tuneable. Mathematical model is derived to characterize the behaviour of the emulator circuit. Frequency analysis is performed to determine how to maintain the pinched hysteresis loop at high frequencies. The presented emulator circuit is simulated with SPICE simulation program. The breadboard experiment of emulator circuit is built using CA3080 and AD844 ICs for OTA and CCII devices respectively. Frequency dependent pinched hysteresis loop in the current versus voltage plane holds up to 10 kHz. Mathematical model and theoretical analyses show a good agreement with SPICE simulation and experimental test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  2. Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.

    Article  MathSciNet  Google Scholar 

  3. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  4. Di Ventra, M., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97(10), 1717–1724.

    Article  Google Scholar 

  5. Kim, H., Sah, M. P., Yang, C., Roska, T., & Chua, L. O. (2012). Memristor bridge synapses. Proceedings of the IEEE, 100(6), 2061–2070.

    Article  Google Scholar 

  6. Pershin, Y. V., & Di Ventra, M. (2012). Neuromorphic, digital, quantum computation with memory circuit elements. Proceedings of the IEEE, 100(6), 2071–2080.

    Article  Google Scholar 

  7. Merrikh-Bayat, F., Bagheri-Shouraki, S., & Rohani, A. (2011). Memristor crossbar-based hardware implementation of IDSmethod. EEE Transactions on Fuzzy Systems, 19(6), 1083–1096.

    Article  Google Scholar 

  8. Shin, S., Kim, K., & Kang, S. M. (2013). Resistive computing: Memristors enabled signal multiplication. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(5), 1241–1249.

    Article  MathSciNet  Google Scholar 

  9. Talukdar, A., Radwan, A., & Salama, K. (2011). A memristor-based third-order oscillator: Beyond oscillation. Applied Nanoscience, 1(3), 1–3.

    Article  Google Scholar 

  10. Yilmaz, Y., & Mazumder, P. (2013). Image processing by a programmable grid comprising quantum dots and memristors. IEEE Transactions on Nanotechnology, 12(6), 879–887.

    Article  Google Scholar 

  11. Sedra, A., & Smith, K. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Article  Google Scholar 

  12. Zhang, Y., Zhang, X., & Yu, J. (2009). Approximated SPICE model for memristor. In International conference on communications, circuits and systems (ICCCAS), Milpitas, CA (pp. 928–931).

  13. Benderli, S., & Wey, T. A. (2009). On SPICE macromodelling of TiO2 memristors. Electronics Letters, 45(7), 377–379.

    Article  Google Scholar 

  14. Biolek, D., Biolek, Z., & Biolkova, V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. In Proceedings of the European conference on circuits theory and design (ECCTD’09), Antalya, Turkey (pp. 249–252).

  15. Mahvash, M., & Parker, A. (2010). A memristor SPICE model for designing memristor circuits. In Proceedings of the 53rd IEEE international midwest symposium on circuits and systems (MWSCAS), Seattle,USA (pp. 989–992).

  16. Batas, D., & Fiedler, H. (2011). A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 10(2), 250–255.

    Article  Google Scholar 

  17. Rak, A., & Cserey, G. (2010). Macromodelling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 632–636.

    Article  Google Scholar 

  18. Sharifi, M. J., & Banadaki, Y. M. (2010). General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. Journal of Circuits, Systems and Computers, 19(2), 407–424.

    Article  Google Scholar 

  19. Abdalla, H., & Pickett, M. D. (2011). SPICE modelling of memristors. In IEEE international symposium on circuits and systems (ISCAS), Rio de Janeiro (pp. 1832–1835).

  20. Abraham, I., Kaya, S., & Pennington, G. (2012). A closed form memristor SPICE model and oscillator. In IEEE 55th international midwest symposium on circuits and systems (MWSCAS), Boise, ID (pp. 1192–1195).

  21. Jameel, S., Koraslı, C., & Nacaroglu, A. (2013). Realization of biquadratic filter by using memristor. In International conference on technological advances in electrical, electronics and computer engineering, (TAEECE), Konya, Turkey (pp. 52–56).

  22. Ascoli, A., Tetzlaf, R., Corinto, F., & Gilli, M. (2013). PSpice switch-based versatile memristor model. In IEEE international symposium on circuits and systems, (ISCAS), Beijing (pp. 205–208).

  23. Berdan, R., Lim, C., Khiat, A., Papavassiliou, C., & Prodromakis, T. (2014). A memristor SPICE model accounting volatile characteristics of practical ReRAM. IEEE Electron Device Letters, 35(1), 135–137.

    Article  Google Scholar 

  24. Biolek, D., Biolek, Z., & Biolkova, V. (2010). Pspice modeling of memcapacitor. Electronics Letters, 46(7), 520–522.

    Article  Google Scholar 

  25. Biolek, D., Biolek, Z., & Biolkova, V. (2011). Pspice modeling of meminductor. Analog Integrated Circuits and Signal Processing, 66(1), 129–137.

    Article  MATH  Google Scholar 

  26. Bo-Cheng, B., Jian-Ping, X., Gua-Hua, Z., Zheng-Hua, M., & Ling, Z. (2011). Chaotic memristive circuit: Equivalent circuit realization and dynamical analysis. Chinese Physics B, 20(12), 120502-1–120502-6.

    Google Scholar 

  27. Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions Circuits and Systems I: Regular Papers, 57(8), 1857–1864.

    Article  MathSciNet  Google Scholar 

  28. Biolek, D., Bajer, J., Biolkova, V., & Kolka, Z. (2011). Mutators for transforming nonlinear resistor into memristor. In 20th European conference on circuit theory and design (ECCTD) (pp. 488–491).

  29. Valsa, J., Biolek, D., & Biolek, Z. (2011). An analogue model of the memristor. International Journal of Numerical Modelling, 24(4), 400–408.

    Article  MATH  Google Scholar 

  30. Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions Circuits and Systems I: Regular Papers, 59(10), 2422–2431.

    Article  MathSciNet  Google Scholar 

  31. Mutlu, R., & Karakulak, E. (2010). Emulator circuit of TiO2 memristor with linear dopant drift made using analog multiplier. In National conference on electrical, electronics and computer engineering (ELECO), Bursa, Turkey (pp. 380–384).

  32. Abuelma’atti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits Signal Processing, 80, 577–584.

    Article  Google Scholar 

  33. Abuelma’atti, M. T., & Khalifa, Z. J. (2015). A continuous-level memristor emulator and its application in a multivibrator circuit. International Journal of Electronics and Communications, 69, 771–775.

    Article  Google Scholar 

  34. Yu, D. S., Chen, H., & Iu, H. C. (2013). Design of a practical memcapacitor emulator without grounded restriction. IEEE Transaction On Circuits and Systems- II, 60(4), 207–211.

    Article  Google Scholar 

  35. López, S. C., López, J. M., Carrasco-Aguilar, M. A., & Montero, M. C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313.

    Article  Google Scholar 

  36. Yu, D., Iu, H., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2888–2896.

    Article  Google Scholar 

  37. Yu, D. S., Chen, H., & Iu, H. H. C. (2013). A meminductive circuit based on floating memristive emulator. In IEEE international symposium on circuits and systems (ISCAS), Beijing (pp. 1692–1695).

  38. Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(8), 487–491.

    Article  Google Scholar 

  39. Yesil, A., Babacan, Y., & Kacar, F. (2014). A new DDCC based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287.

    Article  Google Scholar 

  40. Sozen, H., & Cam, U. (2015). New memristor emulator circuit using OTAs and CCIIs. In International conference on electrical and electronics engineering, Bursa, Turkey.

  41. Martinez, J. S., & Sinencio, E. S. (1986). Analogue OTA multiplier without input voltage swing restrictions, and temperature-compensated. Electronics Letters, 22(11), 599–600.

    Article  Google Scholar 

  42. Data Sheet CA3080. www.intersil.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Sözen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sözen, H., Çam, U. Electronically tunable memristor emulator circuit. Analog Integr Circ Sig Process 89, 655–663 (2016). https://doi.org/10.1007/s10470-016-0785-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0785-2

Keywords

Navigation