Skip to main content

Advertisement

Log in

Evaluating the use of adder compressors for power-efficient HEVC interpolation filter architecture

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The recent High Efficient Video Coding (HEVC) standard introduces a new and complex interpolation filter for fractional-pixel motion estimation and motion compensation. Recent works propose hardware architectures to accelerate the interpolation filter, employing interpolation datapaths with many adders in parallel. Adder compressors are power-efficient operators, that are applied when intermediate additions are not required, which is the case for interpolation filters. This work evaluates the use of different 7-2 and 8-2 adder compressors structures in the interpolation datapaths of a recent HEVC interpolation filter architecture targeting power efficiency. Results show that 7-2 adder compressor (composed with basic 4-2 and 3-2 adder compressors) and 8-2 adder compressor (composed with basic 4-2 adder compressors) reduce power delay product by 16 and 19 %, respectively, compared with adders generated by the synthesis tool. These adder compressors achieved the best results in terms of PDP compared with many classical adders. The full interpolation filter architecture using the best adder compressors dissipates 9967.1 µW of power and consumes 28.21 pJ of energy per operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ITU-T and ISO/IEC, High Efficiency Video Coding, ITU-T Recommendation H.265 and ISO/IEC 23008-2, 2013.

  2. ITU-T and ISO/IEC JTC 1, Advanced video coding, ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), 2011.

  3. Sullivan, G. J., Ohm, J. R., Han, W. J., & Wiegand, T. (2012). Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.

    Article  Google Scholar 

  4. Bossen, F., Bross, B., Suhring, K., & Flynn, D. (2012). HEVC complexity and implementation analysis. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1685–1696.

    Article  Google Scholar 

  5. Diniz, C., Shafique, M., Bampi, S., & Henkel, J. (2013). High-throughput interpolation hardware architecture with coarse-grained reconfigurable datapaths for HEVC. In: IEEE international conference on image processing (ICIP), pp 2091–2095

  6. Guo, Z., Zhou, D., & Goto, S. (2012). An optimized MC interpolation architecture for HEVC. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp. 1117–1120.

  7. Afonso, V., Maich, H., Agostini, L., & Franco, D. (2013). Low cost and high throughput FME interpolation for the HEVC emerging video coding standard. In: IEEE latin american symposium on circuits and systems (LASCAS), pp. 1–4.

  8. Huang, C. T., Juvekar, C., Tikekar, M., & Chandrakasan, A. P. (2013). HEVC interpolation filter architecture for quad full HD decoding. In: Visual communications and image processing (VCIP), pp. 1–5.

  9. Lian, X., Zhou, W., Duan, Z., & Li, R. (2014). An efficient interpolation filter VLSI architecture for HEVC standard. In: IEEE China summit & international conference on signal and information processing (ChinaSIP), pp. 384–388

  10. Kalali, E., & Hamzaoglu, I. (2014). A low energy HEVC sub-pixel interpolation hardware. In: IEEE international conference on image processing (ICIP), pp. 1218–1222.

  11. Pastuszak, G., Trochimiuk, M. (2014). Architecture design of the high-throughput compensator and interpolator for the H. 265/HEVC encoder. Journal of Real-Time Image Processing, doi: 10.1007/s11554-014-0422-1

  12. Zhou, W., Zhou, X., & Lian, X. (2015). An efficient interpolation filter VLSI architecture for HEVC. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1106–1110.

  13. Chen, T. C., Huang, Y. W., & Chen, L. G. (2004). Fully utilized and reusable architecture for fractional motion estimation of H.264/AVC. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp. 9–12.

  14. Lie, W. N., Yeh, H. C., Lin, T. C., & Chen, C. F. (2005). Hardware-efficient computing architecture for motion compensation interpolation in H.264 video coding. In: IEEE international symposium on circuits and systems (ISCAS), pp. 2136–2139.

  15. Zatt, B., Silva, L. M. L., Azevedo, A., Agostini, L., Susin, A., & Bampi, S. (2013). A reduced memory bandwidth and high throughput HDTV motion compensation decoder for H.264/AVC High 4:2:2 Profile. Journal of Real-Time Image Processing, 8(1), 127–140.

    Article  Google Scholar 

  16. Lv, H., Wang, R., Xie, X., Jia, H., & Gao, W. (2012). A comparison of fractional-pel interpolation filters in HEVC and H.264/AVC. In: Visual communications and image processing (VCIP), pp. 1–6.

  17. Weinberger, A. (1981). 4-2 carry-save adder module. IBM Technical Disclosure Bulletin, 23(8), 3811–3814.

    Google Scholar 

  18. Prasad, K., & Parhi, K. (2001) Low-Power 4-2 and 5-2 compressors. In: 35th Asilomar conference on signals, systems and computers, pp. 129–133.

  19. Altermann, J. S., Costa, E. A. C., & Bampi, S. (2010). Fast forward and inverse transforms for the H.264/AVC standard using hierarchical adder compressors. In: IEEE/IFIP VLSI system on chip conference (VLSI-SOC), pp. 310–315.

  20. Rouholamini, M., Kavehie, O., Mirbaha, A. P., Jasbi, S. J., & Navi, K. (2007). A new design for 7:2 compressors. In: IEEE/ACS international conference on computer systems and applications (AICCSA), 2007, pp. 474–478.

  21. NanGate 45 nm Open Cell Library. www.nangate.com/?page_id=22. Accessed November 11, 2015.

  22. Cadence Encounter RTL Compiler v. 8.10. Available at: www.cadence.com. Accessed November 11, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Machado Diniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, C.M., Fonseca, M.B., da Costa, E.A.C. et al. Evaluating the use of adder compressors for power-efficient HEVC interpolation filter architecture. Analog Integr Circ Sig Process 89, 111–120 (2016). https://doi.org/10.1007/s10470-016-0765-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0765-6

Keywords

Navigation