Skip to main content
Log in

Current differencing transconductance amplifier (CDTA) with enhanced performance and its application

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A CMOS current differencing transconductance amplifier (CDTA) with high transconductance has been proposed. The transconductance (gm) of CDTA is generally increased either by increasing the biasing current IB or by increasing the size of transistors used in differential pair and current mirror structures. The first technique leads to higher power dissipation and limited range of transconductance while the second limits the input/output swing and bandwidth of CDTA due to higher parasitic capacitances. In the proposed design of CDTA, a cross coupled PMOS active load has been used in place of conventional PMOS active load. The cross coupled PMOS active load forms a positive feedback which results in higher transconductance, wider tuning range and less power consumption without any limitations on input/output swing and bandwidth of the CDTA. Mentor Graphics Eldo simulation tool has been used to verify the performance of proposed CDTA with TSMC 0.18 µm technology parameters. A voltage/current mode oscillator circuit of third order has been designed by proposed CDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. Biolek, D. (2003). CDTA-building block for current-mode analog signal processing. In Proceedings of the European Conference on Circuit Theory and Design (pp. 397–400).

  2. Tangsrirat, W., Pukkalanun, T., & Surakampontorn, W. (2011). Synthesis of current differencing transconductance amplifier-based current limiters and its applications. Journal of Circuits Systems and Computers, 20(02), 185–206.

    Article  Google Scholar 

  3. Jaikla, W., Khateb, F., Siripongdee, S., Supavarasuwat, P., & Suwanjan, P. (2013). Electronically tunable current-mode biquad filter employing CCCDTAs and grounded capacitors with low input and high output impedance. International Journal of Electronics and Communications, 67(12), 1005–1009.

    Article  Google Scholar 

  4. Li, Y. (2011). A modified CDTA (MCDTA) and its applications: designing current-mode sixth-order elliptic band-pass filter. Circuits Systems and Signal Processing, 30(6), 1383–1390.

    Article  Google Scholar 

  5. Tangsrirat, W., & Pukkalanun, T. (2011). Structural generation of two integrator loop filters using CDTAs and grounded capacitors. International Journal of Circuit Theory and Applications, 39(1), 31–45.

    Article  MATH  Google Scholar 

  6. Yongan, L. I. (2011). Current-mode sixth-order elliptic band-pass filter using MCDTAs. Radioengineering, 20(3), 645.

    Google Scholar 

  7. Tangsrirat, W., Pukkalanun, T., & Surakampontorn, W. (2010). Resistorless realization of current-mode first-order allpass filter using current differencing transconductance amplifiers. Microelectronics Journal, 41(2), 178–183.

    Article  Google Scholar 

  8. Biolek, D., Biolkova, V., & Kolka, Z. (2009). Current-mode biquad employing single CDTA. Indian Journal of Pure and Applied Physics, 47(7), 535–537.

    Google Scholar 

  9. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2009). Multi-function biquad using single current differencing transconductance amplifier. Analog Integrated Circuits and Signal Processing, 61(3), 309–313.

    Article  Google Scholar 

  10. Lahiri, A., & Chowdhury, A. (2009). A novel first-order current-mode all-pass filter using CDTA. Radioengineering, 18(3), 300–305.

    Google Scholar 

  11. Šotner, R., Petržela, J., & Slezak, J. (2009). Current-controlled current-mode universal biquad employing multi-output transconductors. Radioengineering, 18(3), 285–294.

    Google Scholar 

  12. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2010). New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering, 19(1), 194–198.

    Google Scholar 

  13. Xia, Z., Wang, C., Jin, J., Du, S., Lin, H., & Yang, H. (2015). Novel AM/FM/ASK/FSK/PSK/QAM signal generator based on a digitally programmable CDTA. Circuits Systems and Signal Processing, 34(5), 1635–1653.

    Article  Google Scholar 

  14. Siripruchyanun, M., & Jaikla, W. (2008). A current-mode analog multiplier/divider based on CCCDTA. International Journal of Electronics and Communications, 62(3), 223–227.

    Article  Google Scholar 

  15. Jaikla, W., & Prommee, P. (2011). Electronically tunable current-mode multiphase sinusoidal oscillator employing CCCDTA-based allpass filters with only grounded passive elements. Radioengineering, 20(3), 594–599.

    Google Scholar 

  16. Biolek, D., Keskin, A. Ü., & Biolkova, V. (2010). Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circuits, Devices and Systems, 4(6), 496–502.

    Article  Google Scholar 

  17. Yongan, L. I. (2010). Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineering, 19(4), 667–671.

    Google Scholar 

  18. Horng, J. W. (2009). Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components. doi:10.1155/2009/789171.

    Google Scholar 

  19. Rai, S. K., & Gupta, M. A. (2015). A transconductance boosted CMOS current differencing transconductance amplifier (TBCDTA) and its application. Analog Integrated Circuits and Signal Processing, 84(1), 75–88.

    Article  Google Scholar 

  20. Khateb, F., Vávra, J., & Biolek, D. (2010). A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering, 19(3), 437–445.

    Google Scholar 

  21. Pandey, N., & Pandey, R. (2013). Current mode full-wave rectifier based on a single MZC-CDTA. Active and Passive Electronic Components, 2013.

  22. Kacar, F., & BAŞAK, M. E. (2014). A new mixed mode full-wave rectifier realization with current differencing transconductance amplifier. Journal of Circuits Systems and Computers, 23(07), 1450101.

    Article  Google Scholar 

  23. Silapan, P., & Siripruchyanun, M. (2011). Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integrated Circuits and Signal Processing, 68(1), 111–128.

    Article  Google Scholar 

  24. Tangsrirat, W., Pukkalanun, T., Mongkolwai, P., & Surakampontorn, W. (2011). Simple current-mode analog multiplier, divider, square-rooter and squarer based on CDTAs. International Journal of Electronics and Communications, 65(3), 198–203.

    Article  Google Scholar 

  25. Keskin, A. Ü., Biolek, D., Hancioglu, E., & Biolková, V. (2006). Current-mode KHN filter employing current differencing transconductance amplifiers. International Journal of Electronics and Communications, 60(6), 443–446.

    Article  Google Scholar 

  26. Sedra, A. S., & Smith, K. C. (2005). Microelectronic Circuits, Fifth Edition. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S.K., Gupta, M. Current differencing transconductance amplifier (CDTA) with enhanced performance and its application. Analog Integr Circ Sig Process 86, 307–319 (2016). https://doi.org/10.1007/s10470-015-0675-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0675-z

Keywords

Navigation