Skip to main content
Log in

A transconductance boosted CMOS current differencing transconductance amplifier (TBCDTA) and its application

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a transconductance (gm) boosted CMOS current differencing transconductance amplifier (TBCDTA). The transconductance amplifier of CDTA has been modified in TBCDTA, which results in higher and wide range of transconductance with power dissipation lying in the same range as that of existing CDTA. It has been observed that the transconductance (gm) of CDTA is varied by changing the biasing current IB which leads to higher power dissipation and limited range of transconductance. In the proposed TBCDTA, the biasing current IB is kept constant and transconductance has been boosted by connecting ‘N’ number of MOSFETs in parallel in place of conventional MOSFETs of differential pair and current mirror structures. The workability of the proposed TBCDTA has been verified by using Mentor Graphics Eldo simulation tool with TSMC CMOS 0.18 µm process parameters. A new resistorless third order voltage/current mode quadrature sinusoidal oscillator has been designed. The KHN filter designed by proposed TBCDTA gives better performance than the KHN filter designed by an existing CDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. Biolek, D. (2003). CDTA-building block for current-mode analog signal processing. In Proceedings of the European Conference on Circuit Theory and Design (pp. 397–400).

  2. Bekri, A.T., & Anday, F. (2005). Nth-order low-pass filter employing current differencing transconductance amplifiers. In Proceedings of the European Conference on Circuit Theory and Design (pp. 193–196).

  3. Uygur, A., & Kuntman, H. (2007). Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs. International Journal of Electronics and Communications, 61(5), 320–328.

    Article  Google Scholar 

  4. Xu, J., Wang, C., & Jin, J. (2013). Current differencing cascaded transconductance amplifier (CDCTA) and its applications on current-mode nth-order filters. Circuits Systems and Signal Processing, 32(5), 2047–2063.

    Article  MathSciNet  Google Scholar 

  5. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2009). Universal current-mode biquad filter using dual output current differencing transconductance amplifier. International Journal of Electronics and Communications, 63(6), 497–501.

    Article  Google Scholar 

  6. Jaikla, W., & Siripruchyanan, M. (2006). A versatile quadrature oscillator and universal biquad filter using dual-output current controlled current differencing transconductance amplifier. In IEEE International Symposium on Communications and Information Technologies (pp. 1072–1075).

  7. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2009). Multi-function biquad using single current differencing transconductance amplifier. Analog Integrated Circuits and Signal Processing, 61(3), 309–313.

    Article  Google Scholar 

  8. Biolek, D., & Biolková, V. (2005). CDTA-C current-mode universal 2nd-order filter. In Proceedings of the 5th WSEAS International Conference on Applied Informatics and Communications (pp. 411–414.

  9. Tangsrirat, W., Pukkalanun, T., & Surakampontorn, W. (2010). Resistorless realization of current-mode first-order allpass filter using current differencing transconductance amplifiers. Microelectronics Journal, 41(2), 178–183.

    Article  Google Scholar 

  10. Shah, N. A., Quadri, M., & Iqbal, S. Z. (2008). High output impedance current mode all pass inverse filter using CDTA. Indian Journal of Pure and Applied Physics, 46(12), 893–896.

    Google Scholar 

  11. Tanaphatsiril, C., Jaikla, W., & Siripruchyanun, M. (2008). An electronically controllable voltage-mode first order all-pass filter using only single CCCDTA. In IEEE International Symposium on Communications and Information Technologies (pp. 305–309).

  12. Shah, N. A., Quadri, M., & Iqbal, S. Z. (2008). CDTA based transimpedance type first-order all-pass filter. WSEAS Transactions on Electronics, 5(6), 280–284.

    Google Scholar 

  13. Kumngern, M., & Dejhan, K. (2009). Electronically tunable current-mode quadrature oscillator using current differencing transconductance amplifiers. In IEEE Region 10 Conference (1–4).

  14. Tangsrirat, W., & Tanjaroen, W. (2008). Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circuits Systems and Signal Processing, 27(1), 81–93.

    Article  Google Scholar 

  15. Jin, J. (2013). Current-mode resistor-less quadrature oscillators with grounded capacitors using single CCCDTA. Proceedings of the Romanian Academy, Series A, 14(3), 250–254.

    Google Scholar 

  16. Biolek, D., Keskin, A. U., & Biolkova, V. (2010). Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circuits, Devices and Systems, 4(6), 496–502.

    Article  Google Scholar 

  17. Lahiri, A. (2009). Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integrated Circuits and Signal Processing, 61(2), 199–203.

    Article  Google Scholar 

  18. Jaikla, W., Siripruchyanun, M., Bajer, J., & Biolek, D. (2008). A simple current-mode quadrature oscillator using single CDTA. Radio Engineering, 17(4), 33–40.

    Google Scholar 

  19. Tangsrirat, W., Tanjaroen, W., & Pukkalanun, T. (2009). Current-mode multiphase sinusoidal oscillator using CDTA-based all pass sections. International Journal of Electronics and Communications (AEÜ), 63(7), 616–622.

    Article  Google Scholar 

  20. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2008). Realisation of single-resistance-controlled sinusoidal oscillator: a new application of the CDTA. WSEAS Transactions on Electronics, 5(6), 257–259.

    Google Scholar 

  21. Biolek, D., Biolkova, V., & Keskin, A. Ü. (2006). Current mode quadrature oscillator using two CDTAs and two grounded capacitors. In Proceedings of the 5th WSEAS International Conference on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain (pp. 368–370).

  22. Tangsrirat, W., & Tanjaroen, W. (2010). Current mode sinusoidal oscillator with independent control of oscillation frequency and condition using CDTAs. Indin Journal of Pure and Applied Physics, 48, 363–366.

    Google Scholar 

  23. Horng, J. W. (2009). Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components. doi:10.1155/2009/789171.

    Google Scholar 

  24. Kumngern, M. (2010). Current-mode multiphase sinusoidal oscillator using current-controlled current differencing transconductance amplifiers. In IEEE Asia Pacific Conference on Circuits and Systems (pp. 728–731).

  25. Bumrongchoke, T., Duangmalai, D., & Jaikla, W. (2010). Current differencing transconductance amplifier based current-mode quadrature oscillator using grounded capacitors. In IEEE International Symposium on Communications and Information Technologies (pp. 192–195).

  26. Sotner, R., Jerabek, J., Jaikla, W., Herencsar, N., Vrba, K., & Dostal, T. (2013). Novel oscillator based on voltage and current-gain adjusting used for control of oscillation frequency and oscillation condition. Electronics and Electrical Engineering, 19(6), 75–80.

    Google Scholar 

  27. Vavra, J., & Bajer, J. (2013). Current-mode multiphase sinusoidal oscillator based on current differencing units. Analog Integrated Circuits and Signal Processing, 74(1), 121–128.

    Article  Google Scholar 

  28. Sotner, R., Herencsar, N., Jerabek, J., Koton, J., Dostal, T., & Vrba, K. (2013). Electronically controlled oscillator with linear frequency adjusting for four-phase or differential quadrature output signal generation. International Journal of Circuit Theory and Applications, 42, 1264–1289.

    Article  Google Scholar 

  29. Jaikla, W., Siripruchyanun, M., Biolek, D., & Biolkova, V. (2010). High-output-impedance current mode multiphase sinusoidal oscillator employing current differencing transconductance amplifier-based allpass filters. International Journal of Electronics, 97(7), 811–826.

    Article  Google Scholar 

  30. Jin, J., & Wang, C. (2014). CDTA-based electronically tunable current- mode quadrature oscillator. International Journal of Electronics, 101(8), 1086–1095.

    Article  Google Scholar 

  31. Biolek, D., Hancioglu, E., & Keskin, A. Ü. (2008). High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. International Journal of Electronics and Communications, 62(2), 92–96.

    Article  Google Scholar 

  32. Khateb, F., Vávra, J., & Biolek, D. (2010). A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering, 19(3), 437–445.

    Google Scholar 

  33. Koton, J., Herencsar, N., Vrba, K., & Minaei, S. (2011). Precision full-wave current-mode rectifier using current differencing transconductance amplifier. In IEEE 3rd International Conference on Communication Software and Networks (pp. 460–463).

  34. Firat, K., & Basak, M. E. (2014). A new mixed mode full-wave rectifier realization with current differencing transconductance amplifier. Journal of Circuits, Systems and Computers, 23(7), 1–15.

    Google Scholar 

  35. Anand, V. K., Sagar, V., & Gupta, A. N. (2013). High performance temperature insensitive current mode rectifier without diode. IOSR Journal of Electronics and Communication Engineering, 6(1), 76–89.

    Article  Google Scholar 

  36. Maktoomi, M. A., Mishra, R. K., Siddiqi, M. A., & Pyari, M.P. (2012). CDTA based logarithmic amplifier. In IEEE International Conference on Signal Processing, Computing and Control (pp. 1–4).

  37. Biolek, D., & Biolková, V. (2006). Current-mode CDTA-based comparators. In The 13th International Conference on Electronic Devices and Systems (pp. 6–10).

  38. Tanjaroen, W., Dumawipata, T., Unhavanich, S., Tangsrirat, W., & Surakampontorn, W. (2006). Design of current differencing transconductance amplifier and its application to current-mode KHN biquad filter. Proceedings of the ECTI-CON, 2, 497–500.

    Google Scholar 

  39. Tangsrirat, W., Dumawipata, T., & Surakampontorn, W. (2007). Multiple-input single-output current-mode multifunction filter using current differencing transconductance amplifiers. International Journal of Electronics and Communications, 61(4), 209–214.

    Article  Google Scholar 

  40. Winai, J., & Siripruchyanun, M. (2006). Current controlled current differencing transconductance amplifier (CCCDTA): A new building block and its applications. Proceedings of ECTI Conference, 2006, 348–351.

    Google Scholar 

  41. Uygur, A., Kuntman, H., & Zeki, A. (2005). Multi-input multi-output CDTA-based KHN filter. In The Fourth International Conference on Electrical and Electronics (pp. 46–50).

  42. Uygur, A., & Kuntman, H. (2005). Design of a current differencing transconductance amplifier (CDTA) and its application on active filters. In IEEE Proceedings of the 13th Conference on signal processing and communications applications (pp. 340–343).

  43. Keskin, A. U., & Biolek, D. (2006). Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proceedings Circuits, Devices and Systems, 153(3), 214–218.

    Article  Google Scholar 

  44. Uygur, A., & Kuntman, H. (2006). Low-voltage current differencing transconductance amplifier in a novel allpass configuration. In IEEE Eletrotechnical Conference (pp. 23–26).

  45. Khateb, F., & Biolek, D. (2011). Bulk-driven current differencing transconductance amplifier. Circuits, Systems, and Signal Processing, 30(5), 1071–1089.

    Article  Google Scholar 

  46. Soni, G. S., & Ansari, M. S. (2014). Current-mode electronically—tunable schmitt trigger using single 65 nm ± 0.75 V CMOS CDTA. In IEEE Conference on Signal Propagation and Computer Technology (pp. 137–141).

  47. Alaybeyoglu, E., Guney, A., Altun, M., & Kuntman, H. (2014). Design of positive feedback driven current-mode amplifiers Z-copy CDBA and CDTA, and filter applications. Analog Integrated Circuits and Signal Processing, 81(1), 109–120.

    Article  Google Scholar 

  48. Pandey, N., & Pandey, R. (2013). Current mode full wave rectifier based on a single MZC-CDTA. Active and Passive Electronic Components. doi:10.1155/2013/967057.

    Google Scholar 

  49. Li, Y. (2011). A modified CDTA (MCDTA) and its applications: Designing current-mode sixth-order elliptic band pass filter. Circuits Systems and Signal Processing, 30(6), 1382–1390.

    Google Scholar 

  50. Keskin, A. Ü., Biolek, D., Hancioglu, E., & Biolková, V. (2006). Current-mode KHN filter employing current differencing transconductance amplifiers. International Journal of Electronics and Communications, 60(6), 443–446.

    Article  Google Scholar 

  51. Binkley, D. M. (2008). Tradeoffs and optimization in analog CMOS design (pp. 1–594). Hoboken: John Wiley & Sons Ltd.

    Book  Google Scholar 

  52. Sedra, A. S., & Smith, K. C. (2005). Microelectronic Circuits (5th ed.). Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S.K., Gupta, M. A transconductance boosted CMOS current differencing transconductance amplifier (TBCDTA) and its application. Analog Integr Circ Sig Process 84, 75–88 (2015). https://doi.org/10.1007/s10470-015-0538-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0538-7

Keywords

Navigation