Skip to main content
Log in

A high-order closed-loop ΣΔ interface for micro-machined accelerometer sensor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a closed-loop interface for micro-machined accelerometer sensor based on a force-feedback sigma-delta loop. A high-order closed-loop accelerometer interface circuit is investigated, and a time-shared multiplexing electrostatic feedback technique is used to eliminate feedthrough between feedback signals and pick-up charge signals. A low noise capacitance detection circuit is proposed with correlated-double-sampling technique to eliminate the 1/f noise and offset of operational amplifier. The interface is fabricated in a standard 0.5 μm CMOS process and the active circuit area is about 13 mm2. The chip consumes 20 mW from a 5 V supply with a sampling clock of 250 kHz. The average noise floor of the digital accelerometer is about −115 dBV/Hz1/2 over a 1.5 kHz bandwidth. Corresponding to a sensitivity of 302 mV/g, the measured resolution of the accelerometer system is about 6 μg/Hz1/2. The nonlinearity is 0.085 %. The figure of merit shows that the proposed sigma-delta interface achieves a good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lv, B., Wang, P., Wang, D., et al. (2012). A high-performance closed-loop fourth-order sigma-delta micro-machined accelerometer. Key Engineering Materials, 503, 134–138.

    Article  Google Scholar 

  2. Babak Vakili, A., Reza, A., & Farrokh, A. (2006) A 4.5 mW closed-loop ΔΣ micro-gravity CMOS-SOI accelerometer. IEEE International Solid-State Circuits Conference, 1101–1110.

  3. Haluk, K., & Junseok, C. (2006). Noise analysis and characterization of a sigma-delta capacitive microaccelerometer. IEEE Journal of Solid-State Circuit, 41(2), 352–361.

    Article  Google Scholar 

  4. Yufeng, D., Michael, K., & William, R.-W. (2006). Force feedback linearization for higher-order electromechanical sigma–delta modulators. Journal of Micromechnaic and Microengineering, 16, S54–S60.

    Article  Google Scholar 

  5. Kulah, H., Salian, A., Yazdi, N., & Najafi, K (2002) A 5 V closed-loop second-order sigma-delta micro-g micro-accelerometer. Proceedings of Solid-State Sensors and Actuators. Hilton Head, SC: 219–222.

  6. Petkov, V. P., & Boser, B. E. (2005). A fourth-order ΣΔ interface for micromachined inertial sensors. IEEE Journal of Solid-State Circuit, 40(8), 1602–1609.

    Article  Google Scholar 

  7. Yufeng, D., Michael, K., & William, R.-W. (2007). Higher order noise-shaping filters for high-performance micromachined accelerometers. IEEE Transactions on Instrumentation and Measurement, 56(5), 1666–1674.

    Article  Google Scholar 

  8. Yuntao, L., Xiaowei, L., Yang, W., & Weiping, C. (2012). A sigma-delta interface ASIC for force-feedback micromachined capacitive accelerometer. Analog Integrated Circuits and Signal Processing, 72, 27–35.

    Article  Google Scholar 

  9. Jiangfeng, W. (2002) Sensing and control electronics for low-mass low-capacitance MEMS accelerometers. Doctoral Dissertation, Carnegie Mellon University: 65–66.

  10. Yin, L. (2011) Research on interface AISC for capacitive micromachined inertial sensor. Doctoral Dissertation, Harbin Institute of Technology: 23–24.

  11. Xu, H., Fu, Q., Liu, H., et al. (2014). A 16-bit sigma-delta modulator applied in micro-machined inertial sensors. Journal of Semiconductors, 35(4), 1–6.

    Article  Google Scholar 

  12. Mark, L., & Boser, B. E. (1999). A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE Journal of Solid-State Circuit, 34(4), 456–468.

    Article  Google Scholar 

  13. Mikail, Y., Mika, P., & Antti, K. (2012). A High-resolution accelerometer with electrostatic damping and improved supply sensitivity. IEEE Journal of Solid-State Circuits, 47(7), 1721–1730.

    Article  Google Scholar 

  14. Lasse, A., & Kari, H. (2009). Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 μg and bandwidth of 300 Hz. Sensors and Actuators A: Physics, 154, 46–56.

    Article  Google Scholar 

  15. Pastre, M. (2009) A 300 Hz 19b DR capacitive accelerometer based on a versatile front end in a 5th-order ΔΣ loop. Proceedings European Solid-State Circuits Conference: 288–291.

  16. Pedram, L., Petkov, V. P., & Boris, M. (2013). A ΔΣ interface for MEMS Accelerometers using electrostatic spring constant modulation for cancellation of bondwire capacitance drift. IEEE Journal of Solid-State Circuit, 48(1), 265–275.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Project 61204121) and National Hi-Tech Research and Development Program of China (863 Program) (Grant No. 2013AA041107). The author would like to thank Peking University for providing the sensor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liu, X., Fu, Q. et al. A high-order closed-loop ΣΔ interface for micro-machined accelerometer sensor. Analog Integr Circ Sig Process 82, 401–410 (2015). https://doi.org/10.1007/s10470-014-0436-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0436-4

Keywords

Navigation