Skip to main content
Log in

In-vitro RF characterization of implantable telemetry system

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

We present the discrete prototype version of our wireless telemetry system architecture, which is suitable for custom IC implementation and intended to eventually retrieve blood pressure and volume (PV) data from small animal subjects (e.g., mice, rats). The architecture consists of four system level blocks that are stacked in \(2.475\,{\hbox{cm}}^{3}\) volume and it weights 4.0 g. The current prototype’s size is well suited for commercial implementation inside medium sized animal subjects, for instance, rabbits and larger rats. Transmit power reported in this paper is tested between 0 to \(-\)20 dBm by using phantom tissue model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ameli, R., Mirbozorgi, A., Neron, J. L., LeChasseur, Y., & Gosselin, B. (2013). A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording. In 35th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5662–5665). doi:10.1109/EMBC.2013.6610835.

  2. Baan, J., Van Der Velde, E., De Bruin, H., Smeenk, G., Koops, J., Van Dijk, A., et al. (1984). Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation, 70(5), 812–823.

    Article  Google Scholar 

  3. Bahrami, H., Mirbozorgi, S., Rusch, L., & Gosselin, B. (2014). Biological channel modeling and implantable uwb antenna design for neural recording systems. IEEE Transactions on Biomedical Engineering, PP(99), 1–1. doi:10.1109/TBME.2014.2339836.

    Article  Google Scholar 

  4. Chow, E., Morris, M., & Irazoqui, P. (2013). Implantable rf medical devices: The benefits of high-speed communication and much greater communication distances in biomedical applications. IEEE Microwave Magazine, 14(4), 64–73. doi:10.1109/MMM.2013.2248586.

    Article  Google Scholar 

  5. Chow, E. Y., Ouyang, Y., Beier, B., Chappell, W. J., & Irazoqui, P. P. (2009). Evaluation of cardiovascular stents as antennas for implantable wireless applications. IEEE Transactions on Microwave Theory and Techniques, 57(10), 2523–2532.

    Article  Google Scholar 

  6. Cong, P., Ko, W. H., & Young, D. J. (2010). Wireless batteryless implantable blood pressure monitoring microsystem for small laboratory animals. IEEE Sensors Journal, 10(2), 243–254.

    Article  Google Scholar 

  7. Feldman, M., Pak, P., Wu, C., Haber, H., Heesch, C., Bergin, J., et al. (1996). Acute cardiovascular effects of opc-18790 in patients with congestive heart failure: time-and dose-dependence analysis based on pressure-volume relations. Circulation, 93(3), 474–483.

    Article  Google Scholar 

  8. Francis, J., Weiss, R., Wei, S., Johnson, A., & Felder, R. (2001). Progression of heart failure after myocardial infarction in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281(5), R1734–R1745.

    Google Scholar 

  9. Fricke, K., Dounavis, A., & Sobot, R. (2013). Wireless telemetry system for implantable cardiac monitoring in small animal subjects using pressure-volume sensors. In IEEE 11th international new circuits and systems conference (NEWCAS), (pp. 1–4).

  10. Fricke, K., & Sobot, R. (2013). Miniature implantable telemetry system for pressure-volume cardiac monitoring. In IEEE biomedical circuits and systems conference (BioCAS), (pp. 282–285).

  11. Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. literature survey. Physics in Medicine and Biology, 41(11), 2231.

    Article  Google Scholar 

  12. Gabriel, S., Lau, R., & Gabriel, C. (1996). The dielectric properties of biological tissues: Ii. measurements in the frequency range 10 hz to 20 ghz. Physics in Medicine and Biology, 41, 2251.

    Article  Google Scholar 

  13. Gabriel, S., Lau, R., & Gabriel, C. (1996). The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology, 41(11), 2271.

    Article  Google Scholar 

  14. Ito, K., Furuya, K., Okano, Y., & Hamada, L. (2001). Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electronics and Communications in Japan (Part I: Communications), 84(4), 67–77.

    Article  Google Scholar 

  15. Johnson, C. C., & Guy, A. W. (1972). Nonionizing electromagnetic wave effects in biological materials and systems. Proceedings of the IEEE, 60(6), 692–718.

    Article  Google Scholar 

  16. Ko, W., Hynecek, J., & Boettcher, S. (1959). Implantable pressure transducer for biomedical applications. In 27th electronic component conference, Arlington, Virginia, May, vol. 16.

  17. Lankford, E., Kass, D., Maughan, W., & Shoukas, A. (1990). Does volume catheter parallel conductance vary during a cardiac cycle? American Journal of Physiology-Heart and Circulatory Physiology, 258(6), H1933–H1942.

    Google Scholar 

  18. Luo, L., Gannes, K., Fricke, K., Senjuti, S., & Sobot, R. (2012). Low-power cmos voltage regulator architecture for implantable rf circuits. In IEEE fourth international EURASIP workshop on RFID technology (EURASIP RFID), (pp. 99–106).

  19. Poon, A., O’Driscoll, S., & Meng, T. (2010). Optimal frequency for wireless power transmission into dispersive tissue. IEEE Transactions on Antennas and Propagation, 58(5), 1739–1750. doi:10.1109/TAP.2010.2044310.

    Article  Google Scholar 

  20. Raghavan, K., Feldman, M., Porterfield, J., Larson, E., Jenkins, J., Escobedo, D., et al. (2011). A bio-telemetric device for measurement of left ventricular pressure-volume loops using the admittance technique in conscious, ambulatory rats. Physiological Measurement, 32, 701.

    Article  Google Scholar 

  21. Ritter, R., Handwerker, J., Liu, T., & Ortmanns, M. (2014). Telemetry for implantable medical devices: Part 1 - media properties and standards. IEEE Solid-State Circuits Magazine, 6(2), 47–51. doi:10.1109/MSSC.2014.2315052.

    Article  Google Scholar 

  22. Senjuti, S., Fricke, K., Dounavis, A., & Sobot, R. (2012). Misalignment analysis of resonance-based wireless power transfer to biomedical implants. In 25th IEEE canadian conference on electrical computer engineering (CCECE), (pp. 1–5) doi:10.1109/CCECE.2012.6334898.

  23. Uemura, K., Kawada, T., Sugimachi, M., Zheng, C., Kashihara, K., Sato, T., et al. (2004). A self-calibrating telemetry system for measurement of ventricular pressure-volume relations in conscious, freely moving rats. American Journal of Physiology-Heart and Circulatory Physiology, 287(6), H2906–H2913.

    Article  Google Scholar 

  24. Wei, C., & Shih, M. (2009). Calibration capacity of the conductance-to-volume conversion equations for the mouse conductance catheter measurement system. IEEE Transactions on Biomedical Engineering, 56(6), 1627–1634.

    Article  Google Scholar 

  25. Wei, C., Valvano, J., Feldman, M., & Pearce, J. (2005). Nonlinear conductance-volume relationship for murine conductance catheter measurement system. IEEE Transactions on Biomedical Engineering, 52(10), 1654–1661.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to Transonic Scisense Inc., NSERC, and CMC Microsystems for supporting our research and for providing the design technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Fricke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fricke, K., Wang, Z. & Sobot, R. In-vitro RF characterization of implantable telemetry system. Analog Integr Circ Sig Process 81, 635–644 (2014). https://doi.org/10.1007/s10470-014-0422-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0422-x

Keywords

Navigation