Skip to main content

Implanted Antennas in Biomedical Telemetry

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

Biomedical telemetry permits the measurement of physiological signals at a distance, through either wired or wireless communication technologies. One of the latest developments in wireless biomedical telemetry is in the field of implantable medical devices (IMDs). Such devices are implanted inside the patient’s body by means of a surgical operation and can be used for a number of diagnostic, monitoring, and therapeutic applications. Implantable antennas, i.e., antennas which are integrated into RF-enabled IMDs, exhibit numerous challenges in terms of design, fabrication, and testing and are, therefore, currently attracting significant research attention. Contributions from researchers of various disciplines build a rich pool of background information, while highlighting future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadia J, Merli F, Zurcher JF, Mosig JR, Skrivervik AK (2009) 3D spiral small antenna design and realization for biomedical telemetry in the MICS band. Radioengineering 18(4):359–367

    Google Scholar 

  • Abbott (2011) FreeStyle navigator, Alameda. https://www.abbottdiabetescare.com/. Last day accessed 4 Aug 2014

  • Ahmed Y, Hao Y, Parini C (2008) A 31.5 GHz patch antenna design for medical implants. Hindawi Int J Antennas Propag 2008:1–6

    Article  Google Scholar 

  • Azad MZ, Ali M (2009) A miniature implanted inverted-F antenna for GPS application. IEEE Trans Antennas Propag 57(6):1854–1858

    Article  Google Scholar 

  • Bao JZ, Lu ST, Hurt WD (1997) Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies. IEEE Trans Microw Theory Techn 45(10):1730–1741

    Article  Google Scholar 

  • Biotronik (2012) Lumax, Berlin. http://www.biotronik.com/wps/wcm/connect/en_de_web/biotronik/sub_top/healthcareprofessionals/products/tachyarrhythmia_therapy/. Last day accessed 4 Aug 2014

    Google Scholar 

  • Buchegger T, Obberger G, Reisenzahn A, Hochmair E, Stelzer A, Springer A (2005) Ultra-wideband transceivers for cochlear implants. EURASIP J App Signal Process 18:3069–3075

    Article  MATH  Google Scholar 

  • Chen ZN, Liu GC, See TSP (2009) Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans Antennas Propag 57(6):1850–1853

    Article  Google Scholar 

  • Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, Irazoqui PP (2010) Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng 57(6):1487–1496

    Article  Google Scholar 

  • Chow EY, Morris MM, Irazoqui PP (2013) Implantable RF medical devices. IEEE Microw Mag 14(4):64–73

    Article  Google Scholar 

  • Conil E, Hadjem A, Lacroux F, Wong MF, Wiart J (2008) Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain. Phys Med Biol 53:1511–1525

    Article  Google Scholar 

  • Dexcom (2008) Seven plus, San Diego. http://www.dexcom.com/seven-plus. Last day accessed 4 Aug 2014

  • Dey S, Mittra R (1996) Compact microstrip patch antenna. Microw Opt Technol Lett 13(1):12–14

    Article  Google Scholar 

  • Furse CM (2009) Biomedical telemetry: today’s opportunities and challenges. In: IEEE international workshop on antenna technology

    Google Scholar 

  • Gabriel C (2005) Dielectric properties of biological tissue: variation with age. Bioelectromagnetics 26(Suppl 7):S12–S18

    Article  Google Scholar 

  • Gabriel C, Gabriel S, Corthout E (1996a) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249

    Article  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: II. Measurements in the frequency Range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996c) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  Google Scholar 

  • Gemio J, Parron J, Soler J (2010) Human body effects on implantable antennas for ISM bands applications: models comparison and propagation losses study. Prog Electromgn Res 110:437–452

    Article  Google Scholar 

  • Gosalia K, Lazzi G, Humayun M (2004) Investigation of microwave data telemetry link for a retinal prosthesis. IEEE Trans Microwave Theory Tech 52(8):1925–1932

    Article  Google Scholar 

  • Greatbatch W, Homes CF (1991) History of implantable devices. IEEE Eng Med Biol Mag 10(3):38–41

    Article  Google Scholar 

  • Guillory K, Normann RA (1999) A 100-channel system for real time detection and storage of extracellular spike waveforms. J Neurosci Methods 91:21–29

    Article  Google Scholar 

  • Hofmann M, Fischer G, Weigel R, Kissinger D (2013) Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans Microwave Theory Tech 61:2195–2204

    Article  Google Scholar 

  • Huang W, Kishk AA (2011) Embedded spiral microstrip implantable antenna. Hindawi Int J Antennas Propag 2011:1–6

    Article  Google Scholar 

  • Huang FJ, Lee CM, Chang CL, Chen LK, Yo TC, Luo CH (2011) Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans Antennas Propag 59(7):2646–2653

    Article  Google Scholar 

  • Institute of Electrical and Electronics Engineers (IEEE) Std 802.15.6. 2012 (2012) IEEE standard for local, metropolitan area networks: wireless body area networks. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • Institute of Electrical and Electronics Engineers (IEEE) Std 95.1-1999 (1999) IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • Institute of Electrical and Electronics Engineers (IEEE) Std 95.1-2005. 2005 (2005) IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522

    Google Scholar 

  • International Telecommunications Union- Radiocommunication Sector (ITU-R) (1998) Radio regulations, SA.1346. http://itu.int/home

  • International Telecommunications Union- Radiocommunication Sector (ITU-R) (2008) Radio regulations, section 5.138 and 5.150. http://itu.int/home

  • Ito K, Furuya K, Okano Y, Hamada L (2001) Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Commun Jpn 84:67–77

    Article  Google Scholar 

  • Karacolak T, Hood AZ, Topsakal E (2008) Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans Microw Theory Tech 56(4):1001–1008

    Article  Google Scholar 

  • Karacolak T, Cooper R, Topsakal E (2009) Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry. IEEE Trans Antennas Propag 57(9):2806–2812

    Article  Google Scholar 

  • Karacolak T, Cooper R, Butler J, Fisher S, Topsakal E (2010) In vivo verification of implantable antennas using rats as model animals. IEEE Antennas Wirel Propag Lett 9:334–337

    Article  Google Scholar 

  • Kawoos U, Tofighi MR, Warty R, Kralick FA, Rosen A (2008) In-vitro and in-vivo trans-scalp evaluation of an intracranial pressure implant at 2.4 GHz. IEEE Trans Microwave Theory Tech 56(10):2356–2365

    Article  Google Scholar 

  • Kendir GA, Liu W, Wang G, Sivaprakasam M, Bashirullah R, Humayun MS, Weil JD (2005) An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans Circuits Syst 52(5):857–866

    Article  Google Scholar 

  • Kim J, Rahmat-Samii Y (1996) Planar inverted F antennas on implantable medical devices: meandered type versus spiral type. Microw Opt Technol Lett 48(3):567–572

    Article  Google Scholar 

  • Kim J, Rahmat-Samii Y (2004) Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Trans Microw Theory Tech 52(8):1934–1943

    Article  Google Scholar 

  • Kim J, Rahmat-Samii Y (2006) SAR reduction of implanted planar inverted F antennas with non-uniform width radiator. In: IEEE international symposium on antennas and propagation, Albuquerque

    Google Scholar 

  • Kiourti A, Nikita KS (2011) Meandered versus spiral novel miniature PIFAs implanted in the human head: tuning and performance. In: 2nd ICST international conference on wireless mobile communication and healthcare (MobiHealth 2012), Kos Island

    Google Scholar 

  • Kiourti A, Nikita KS (2012a) A review of implantable patch antennas for biomedical telemetry: challenges and solutions. IEEE Antennas Propag Mag 54(3):210–228

    Article  Google Scholar 

  • Kiourti A, Nikita KS (2012b) Miniature scalp-implantable antennas for telemetry in the MICS and ISM Bands: design, safety considerations and link budget analysis. IEEE Trans Antennas Propag 60(6):3568–3575

    Article  MathSciNet  MATH  Google Scholar 

  • Kiourti A, Nikita KS (2012c) Accelerated design of optimized implantable antennas for medical telemetry. IEEE Antennas Wirel Propag Lett 11:1655–1658

    Article  Google Scholar 

  • Kiourti A, Nikita KS (2012d) Miniaturization vs gain and safety considerations of implantable antennas for wireless biotelemetry. In: International symposium on antennas and propagation, Chicago

    Google Scholar 

  • Kiourti A, Nikita KS (2013a) Numerical assessment of the performance of a scalp-implantable antenna: effects of head anatomy and dielectric parameters. Bioelectromagnetics 34(3):167–179

    Article  Google Scholar 

  • Kiourti A, Nikita KS (2013b) Design of implantable antennas for medical telemetry: dependence upon operation frequency, tissue anatomy, and implantation site. IGI Global Int J Monit Surveillance Technol Res (IJMSTR) 1(1):16–33

    Article  Google Scholar 

  • Kiourti A, Nikita KS (2014) Implantable antennas: a tutorial on design, fabrication, and in vitro/in vivo testing. IEEE Microw Mag 15(4):77–91

    Article  Google Scholar 

  • Kiourti A, Christopoulou M, Nikita KS (2011a) Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry. In: IEEE international symposium on antennas and propagation, Spokane

    Google Scholar 

  • Kiourti A, Tsakalakis M, Nikita KS (2011b) Parametric study and design of implantable PIFAs for wireless biotelemetry. In: 2nd ICST international conference on wireless mobile communication and healthcare, Kos Island

    Google Scholar 

  • Kiourti A, Costa JR, Fernandes CA, Santiago AG, Nikita KS (2012) Miniature implantable antennas for biomedical telemetry: from simulation to realization. IEEE Trans Biomed Eng 59(11):3140–3147

    Article  Google Scholar 

  • Kiourti A, Psathas KA, Lelovas P, Kostomitsopoulos N, Nikita KS (2013) In vivo tests of implantable antennas in rats: antenna size and inter-subject considerations. IEEE Antennas Wirel Propag Lett 12:1396–1399

    Article  Google Scholar 

  • Kiourti A, Psathas KA, Nikita KS (2014a) Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges. Wiley Bioelectrom 35(1):1–15

    Article  Google Scholar 

  • Kiourti A, Costa JR, Fernandes CA, Nikita KS (2014b) A broadband implantable and a dual-band on-body repeater antenna: design and transmission performance. IEEE Trans Antennas Propag 62(6):2899–2908

    Article  Google Scholar 

  • Lee CM, Yo TC, Luo CH (2006) Compact broadband stacked implantable antenna for biotelemetry with medical devices. In: IEEE Annual conference on wireless and microwave technology, Clearwater

    Google Scholar 

  • Lee CM, Yo TC, Huang FJ, Luo CH (2009) Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry. Microw Opt Technol Lett 51(3):749–752

    Article  Google Scholar 

  • Liu WC, Chen SH, Wu CM (2008a) Implantable broadband circular stacked PIFA antenna for biotelemetry communication. J Electromagn Waves Appl 22(13):1791–1800

    Article  Google Scholar 

  • Liu WC, Yeh FM, Ghavami M (2008b) Miniaturized implantable broadband antenna for biotelemetry communication. Microw Opt Technol Lett 50(9):2407–2409

    Article  Google Scholar 

  • Liu WC, Chen SH, Wu CM (2009) Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices. Microw Opt Technol Lett 51(3):755–757

    Article  Google Scholar 

  • Medtronic (2010a) Adapta with MVP Pacing System, Minneapolis. http://www.medtronic.com/for-healthcare-professionals/products-therapies/cardiac-rhythm/pacemakers/adapta-with-mvp-pacing-system/.Last day accessed 4 Aug 2014

  • Medtronic (2010b) Guardian REAL-Time, Minneapolis. http://www.medtronic-diabetes-me.com/Guardian-REAL-Time.html. Last day accessed 4 Aug 2014

  • Medtronic (2011a) Revo MRI SureScan, Minneapolis. http://www.medtronic.com/for-healthcare-professionals/products-therapies/cardiac-rhythm/pacemakers/revo-mri-pacing-system/. Last day accessed 4 Aug 4 2014

  • Medtronic (2011b) MiniMed Paradigm Veo, Minneapolis. http://www.medtronic-diabetes.co.uk/product-information/paradigm-veo/index.html. Last day accessed Aug 4 2014

  • Medtronic (2012) SynchroMed II Pump, Minneapolis. http://www.medtronic.com/patients/severe-spasticity/therapy/itb-therapy/synchromed-ii-pump/. Last day accessed 4 Aug 2014

  • Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. IEEE J Microelectromech Syst 13(3):429–440

    Article  Google Scholar 

  • Noroozi Z, Hojjat-Kashani F (2012) Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring. Prog Electromagn Res Lett 28:9–21

    Article  Google Scholar 

  • Nucleus Freedom (2010) Cochlear Nucleus System. http://www.cochlear.com/wps/wcm/connect/us/recipients/recipient-support/nucleus. Last day accessed 4 Aug 2014

  • Permana H, Fang Q, Cosic I (2011) 3-Layer implantable microstrip antenna optimized for retinal prosthesis system in MICS band. In: IEEE international symposium on bioelectronics and bioinformatics

    Google Scholar 

  • Permana H, Fang Q, Rowe WST (2013) Hermetic implantable antenna inside vitreous humor simulating fluid. Prog Electromagn Res 133:571–590

    Article  Google Scholar 

  • PositiveID (2004) PositiveID/VeriChip, Delray Beach. http://www.positiveidcorp.com/index.html. Last day accessed 4 Aug 2014

  • Rucker D, Al-Alawi A, Adada R, Al-Rizzo HM (2007) A miniaturized tunable microstrip antenna for wireless communications with implanted medical devices. In: 2nd international ICST conference on body area networks, Brussels

    Google Scholar 

  • SĂ¡nchez-FernĂ¡ndez CJ, Quevedo-Teruel O, Requena-CarriĂ³n J, InclĂ¡n-SĂ¡nchez L, Rajo-Iglesias E (2010) Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices. IET Microw Antennas Propag 4(8):1048–1055

    Article  Google Scholar 

  • Sani A, Alomainy A, Hao Y (2009) Numerical characterization and link budget evaluation of wireless implants considering different digital human phantoms. IEEE Trans Microw Theory Tech 57(10):2605–2613

    Article  Google Scholar 

  • Sani A, Rajab M, Foster R, Hao Y (2010) Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proc IEEE 98:1648–1655

    Article  Google Scholar 

  • Savci HS, Sula A, Wang Z, Dogan NS, Arvas E (2005) MICS transceivers: regulatory standards and applications. In: Proceedings of the IEEE international southeast conference

    Google Scholar 

  • Scanlon WG, Evans NE, McCreesh ZM (1997) RF performance of a 418 MHz radio telemeter packaged for human vaginal placement. IEEE Trans Biomed Eng 44(5):427–430

    Article  Google Scholar 

  • Scanlon WG, Burns JB, Evans NE (2000) Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz. IEEE Trans Biomed Eng 47:527–534

    Article  Google Scholar 

  • Scarpello ML, Kurup D, Rogier H, Ginste DV, Axisa F, Vanfleteren J, Joseph W, Martens L, Vermeeren G (2011) Design of an implantable slot dipole conformal flexible antenna for biomedical applications. IEEE Trans Antennas Propag 59(10):3556–3564

    Article  Google Scholar 

  • Schmid G, Neubauer G, Illievich UM, Alesch F (2003) Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz. Bioelectromagnetics 24:413–422

    Article  Google Scholar 

  • Second Sight (2012) Argus II retinal prosthesis system, Sylmar. http://2-sight.eu/en/product-en. Last day accessed 4 Aug 2014

  • Shults MC, Rhodes RK, Updike SJ, Gilligan BJ, Reining WN (1994) A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng 41(10):937–942

    Article  Google Scholar 

  • Skrivervik AK, Merli F (2011) Design strategies for implantable antennas. In: Antennas and propagation conference, Loughborough, Nov 2011

    Google Scholar 

  • Soontornpipit P, Furse CM, Chung YC (2004) Design of implantable microstrip antenna for communication with medical implants. IEEE Trans Microw Theory Tech 52(8):1944–1951

    Article  Google Scholar 

  • Soontornpipit P, Furse CM, Chung YC (2005) Miniaturized biocompatible microstrip antenna using genetic algorithm. IEEE Trans Antennas Propag 53(6):1939–1945

    Article  Google Scholar 

  • Sun W, Yuan YX (2006) Optimization theory and methods. Springer, New York

    MATH  Google Scholar 

  • Tang Z, Smith B, Schild JH, Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans Biomed Eng 42(5):524–528

    Article  Google Scholar 

  • Valdastri P, Menciassi A, Arena A, Caccamo C, Dario P (2004) An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans Inf Technol Biomed 8(3):271–278

    Article  Google Scholar 

  • Vidal N, Curto S, Lopez Villegas JM, Sieiro J, Ramos FM (2012) Detuning study of implantable antennas inside the human body. Prog Electromagn Res 124:265–283

    Article  Google Scholar 

  • Vidal N, Lopez-Villegas JM, Curto S, Colomer J, Ahyoune S, Garcia A, Sieiro JJ, Ramos FM (2013) Design of an implantable broadband antenna for medical telemetry applications. In: 7th European conference on antennas and propagation

    Google Scholar 

  • Virtanen H, Keshvari J, Lappalainen R (2006) Interaction of radio frequency electromagnetic fields and passive metallic implants-a brief review. Bioelectromagnetics 27:431–439

    Article  Google Scholar 

  • Warty R, Tofighi MR, Kawoos U, Rosen A (2008) Characterization of implantable antennas for intracranial pressure monitoring: reflection by and transmission through a scalp phantom. IEEE Trans Microw Theory Tech 56(10):2366–2376

    Article  Google Scholar 

  • Weiss MD, Smith JL, Bach J (2009) RF coupling in a 433 MHz biotelemetry system for an artificial hip. IEEE Antennas Wirel Propag Lett 8:916–919

    Article  Google Scholar 

  • Wessels D (2002) Implantable pacemakers and defibrillators: device overview and EMI considerations. In: Proceedings of the IEEE international symposium electromagnetic compatibility (EMC 2002)

    Google Scholar 

  • Xia W, Saito K, Takahashi M, Ito K (2009) Performances of an implanted cavity slot antenna embedded in the human arm. IEEE Trans Antennas Propag 57(4):894–899

    Article  Google Scholar 

  • Zarlink (2006) Medical implantable RF transceiver ZL70101 datasheet, Zarlink Semiconductor, Ottawa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimina Kiourti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Kiourti, A., Nikita, K.S. (2016). Implanted Antennas in Biomedical Telemetry. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_94

Download citation

Publish with us

Policies and ethics