Skip to main content
Log in

A comparator-based cyclic analog-to-digital converter with multi-level input tracking boosted preset voltage

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a comparator-based switched-capacitor (CBSC) architecture using a multi-level input tracking preset voltage scheme. The CBSC is used to compensate for technology scaling and to reduce the power consumption of a 2.8 MS/s 10-bit cyclic analog-to-digital converter (ADC). A multi-level preset voltage tracks the input voltage in order to improve the conversion rate without consuming additional power. Additionally, a comparator, current sources, and a feedback capacitor are shared to reduce the power and area of this cyclic ADC. Near the Nyquist-rate, a prototype implemented in 0.18 μm CMOS technology has a signal-to-noise and distortion ratio of 53.69 dB and a spurious-free dynamic-range of 62.36 dB, while consuming 0.73 mW of power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sauerbrey, J., Schmitt-Landsiedel, D., & Thewes, R. (2003). A 0.5 V 1 µW successive approximation ADC. IEEE Journal of Solid-State Circuits, 38(7), 1261–1265.

    Article  Google Scholar 

  2. Scott, M., Boser, B., & Pister, K. (2003). An ultra low-energy ADC for Smart Dust. IEEE Journal of Solid-State Circuits, 38(7), 1123–1129.

    Article  Google Scholar 

  3. Y.-k. Chang, C.-S. Wang, & C.-K. Wang (2007). “A 8-bit 500 KS/s low power SAR ADC for bio-medical application,” IEEE Asian Solid-State Circuits Conference (ASSCC), pp. 228-231.

  4. Rabaey, J. M., Bernardinis, F. D., Niknejad, A. M., Nikolic, B., & Sangiovanni-Vincentelli, A. (2006). Embedding mixed-signal design in systems-on-chip. Proceedings of the IEEE, 94(6), 1070–1088.

    Article  Google Scholar 

  5. Annema, A.-J., Nauta, B., van Langevelde, R., & Tuinhout, H. (2005). Analog circuits in ultra-deep-submicron CMOS. IEEE Journal of Solid-State Circuits, 40(1), 132–143.

    Article  Google Scholar 

  6. Li, P. W., Chin, M. J., Gray, P. R., & Castello, R. (1984). A ratio-independent algorithmic analog-to-digital conversion technique. IEEE Journal of Solid-State Circuits, SC-19, 828–836.

    Article  Google Scholar 

  7. Ginetti, B., Jespers, P. G. A., & Vandemeulebroecke, A. (1992). A CMOS 13-b cyclic RSD A/D converter. IEEE Journal of Solid-State Circuits, 27(7), 957–965.

    Article  Google Scholar 

  8. Nagaraj, K. (1993). Efficient circuit configurations for algorithmic analog to digital converters. IEEE Transactions on Circuits and Systems-II, 40(12), 777–785.

    Article  Google Scholar 

  9. Li, J., Ahn, G., Chang, D., & Moon, U. (2005). A 0.9 V 12 mW 5 MSPS algorithmic ADC with 77 dB SFDR. IEEE Journal of Solid-State Circuits, 40(4), 960–969.

    Article  Google Scholar 

  10. B. R. Gregoire & U.-K. Moon, (2008). “An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with 30 dB loop gain”. ISSCC Digest of Technical Papers, pp. 540–541.

  11. Murmann, B., & Boser, B. E. (2003). A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification. IEEE Journal of Solid-State Circuits, 38(12), 2040–2050.

    Article  Google Scholar 

  12. Lee, S., & Song, B. (1992). Digital-domain calibration of multi-step analog-to-digital converter. IEEE Journal of Solid-State Circuits, 27(12), 1679–1688.

    Article  Google Scholar 

  13. Fiorenza, J. K., Sepke, T., Holloway, P., Sodini, C. G., & Lee, H.-S. (2006). Comparator-based switched-capacitor circuits for scaled CMOS technologies. IEEE Journal of Solid-State Circuits, 41(12), 2658–2668.

    Article  Google Scholar 

  14. J.-K. Woo, T.-H. Kim, H. Lee, S. Kim, H. Lee, & S. Kim, (2011). “A comparator-based cyclic analog-to-digital converter with boosted preset voltage,” International Symposium on Low Power Electronics and Design (ISLPED), pp. 199–204.

  15. Kim, M. G., Hanumolu, P. K., & Moon, U.-K. (2009). A 10 MS/s 11-bit 0.19 mm2 algorithmic ADC with improved clocking scheme. IEEE Journal of Solid-State Circuits, 44(9), 2348–2355.

    Article  Google Scholar 

  16. Yu, P. C., & Lee, H. S. (1996). A 2.5 V, 12-b, 5-Msample/s pipelined CMOS ADC. IEEE Journal of Solid-State Circuits, 31(12), 1854–1861.

    Article  Google Scholar 

  17. Min, B.-M., Kim, P., Bowman, F. W, III, Boisvert, D. M., & Aude, A. J. (2003). A 69 mW 10-bit 80 M Sample/s pipelined CMOS ADC. IEEE Journal of Solid-State Circuits, 38(12), 2031–2039.

    Article  Google Scholar 

  18. Sasidhar, N., Kook, Y.-J., Takeuchi, S., Hamashita, K., Takasuka, K., Hanumolu, P. K., et al. (2009). A low power pipelined ADC using capacitor and opamp sharing technique with a scheme to cancel the effect of signal dependent kickback. IEEE Journal of Solid-State Circuits, 44(9), 2392–2401.

    Article  Google Scholar 

  19. Lu, J., & Holleman, J. (2013). A low-power high-precision comparator with time-domain bulk-tuned offset cancellation. IEEE Transactions on Circuits and Systems I, 60(5), 1158–1167.

    Article  MathSciNet  Google Scholar 

  20. Jarvinen, J. A. M., Saukoski, M., & Halonen, K. A. I. (2008). A 12-bit ratio-independent algorithmic A/D converter for a capacitive sensor interface. IEEE Transactions on Circuits and Systems I, 55(3), 730–740.

    Article  MathSciNet  Google Scholar 

  21. Lin, J.-F., Chang, S.-J., Chiu, C.-F., Tsai, H.-H., & Wang, J.-J. (2009). Low power and wide-bandwidth cyclic ADC with capacitor and opamp reuse techniques for CMOS image sensor application. IEEE Sensors Journal, 9(12), 2044–2054.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Kwan Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, JK., Kim, T. & Kim, S. A comparator-based cyclic analog-to-digital converter with multi-level input tracking boosted preset voltage. Analog Integr Circ Sig Process 81, 729–739 (2014). https://doi.org/10.1007/s10470-014-0406-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0406-x

Keywords

Navigation