Skip to main content

Advertisement

Log in

A 1.2 V 10-bit 5MS/s low power CMOS cyclic ADC based on double-sampling technique

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a 1.2 V 10-bit 5MS/s low power cyclic analog-to-digital converter (ADC). The strategy to minimize the power adopts the double-sampling technique. At the front-end, a timing-skew-insensitive double-sampled Miller-capacitance-based sample-and-hold circuit (S/H) is employed to enhance the dynamic performance of the cyclic ADC. Double sampling technique is also applied to multiplying digital-to-analog converter (MDAC). This scheme provides a better power efficiency for the proposed cyclic ADC. Furthermore, bootstrapped switch is used to achieve rail-to-rail signal swing at low-voltage power supply. The prototype ADC, fabricated in TSMC 0.18 μm CMOS 1P6 M process, achieves DNL and INL of 0.32LSB and 0.45LSB respectively, while SFDR is 69.1 dB and SNDR is 58.6 dB at an input frequency of 600 kHz. Operating at 5MS/s sampling rate under a single 1.2 V power supply, the power consumption is 1.68 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li, P. W., Chin, M. J., Gray, P. R., & Castello, R. (1984). A ratio-independent cyclic analog-to-digital conversion technique. IEEE Journal of Solid-State Circuits, 19(6), 828–836.

    Article  Google Scholar 

  2. Hatanaka, S. & Taniguchi, K. “A ratio-independent cyclic pipeline analog-to-digital converter,” Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on Volume 1, 2–5 Sept. 2001, pp. 345–348.

  3. Jere A. M. Jarvinen, Mikko Saukoski, & Kari Halonen, “A 12-bit Ratio-Independent Cyclic ADC for a Capacitive Sensor Interface,” Proceedings of the IEEE International Symposium on Circuits and Systems ISCAS’07, 27–30 May. 2007, New Orleans, USA, pp. 1713–1716.

  4. Lim, P. J., & Wooley, B. A. (1991). A high-speed sample-and-hold technique using a Miller hold capacitance. IEEE Journal of Solid-State Circuits, 26, 643–651.

    Article  Google Scholar 

  5. Lee, Tsung-Sum, & Chi-Chang, Lu. (2005). A 1.5 V 50 MHz pseudo-differential CMOS sample-and-hold circuit with low hold pedestal. IEEE Transactions on Circuits and Systems-I, 52(9), 1752–1757.

    Article  Google Scholar 

  6. Gustavsson, M., & Tan, N. N. (2000). A global passive sampling technique for high-speed switched-capacitor time-interleaved ADCs. IEEE Transactions on Circuits and Systems-II, 47(9), 821–828.

    Article  Google Scholar 

  7. Kurosawa, N., Kobayashi, H., Maruyama, K., Sugawara, H., & Kobayashi, K. (2001). Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Transactions on Circuits and Systems-I, 48(3), 261–271.

    Article  Google Scholar 

  8. Waltari, M., & Halonen, K. (1999). “Timing skew insensitive switching for double-sampled circuits”, in Proc. IEEE International Symposium on Circuits and Systems, 2, 61–64.

    Google Scholar 

  9. Lee, Seung-Chul, Kim, Kwi-Dong, Kwon, Jong-Kee, Kim, Jongdae, & Lee, Seung-Hoon. (2006). A 10-bit 400-MS/s 160-mW 0.13-/spl mu/m CMOS dual-channel pipeline ADC without channel mismatch calibration. IEEE Journal of Solid-State Circuits, 41(7), 1596–1605.

    Article  Google Scholar 

  10. Abo, Andrew M., & Gray, Paul R. (1999). A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter. IEEE Journal of Solid-State Circuits, 34(5), 599–606.

    Article  Google Scholar 

  11. Waltari, M., & Halonen, K. (2002). Bootstrapped switch without bulk effect in standard CMOS technology. Electronics Letters, 38(12), 555–557.

    Article  Google Scholar 

  12. Li, Jipeng, Ahn, Gil-Cho, Chang, Dong-Young, & Moon, Un-Ku. (2005). A 0.9-V 12-mW 5-MSPS Algorithmic ADC With 77-dB SFDR. IEEE Journal of Solid-State Circuits, 40(4), 960–969.

    Article  Google Scholar 

  13. Huang, Yen-Chuan, & Lee, Tai-Cheng. (2010). A 0.02-mm2 9-Bit 50-MS/s Cyclic ADC in 90-nm Digital CMOS Technology. IEEE Journal of Solid-State Circuits, 45(3), 610–619.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Taiwan, Republic of China. The authors would like to acknowledge fabrication support provided by National Chip Implementation Center (CIC). The author would also like to thank Chien-Kuo Huang for their assistance with simulation and layout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CC. A 1.2 V 10-bit 5MS/s low power CMOS cyclic ADC based on double-sampling technique. Analog Integr Circ Sig Process 81, 137–143 (2014). https://doi.org/10.1007/s10470-014-0374-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0374-1

Keywords

Navigation