Skip to main content
Log in

Multiband RF-sampling receiver front-end with on-chip testability in 0.13 μm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper a flexible RF-sampling front-end primarily intended for WLAN standards operating in the 2.4 GHz and 5–6 GHz bands is presented. The circuit is implemented with on-chip Design for Test (DfT) features in 0.13 μm CMOS process. The front-end consists of a wideband LNA, a sampling IQ down-converter implemented as switched-capacitor decimation filter, test attenuator (TA), and RF detectors. The architecture is generic and scalable in frequency. It can operate at a sampling frequency up to 3 GHz and RF carrier up to 6 GHz with 2× subsampling. The selectable decimation factor of 8 or 16 makes the A/D conversion feasible. The frequency response, linearity, and NF of the whole front-end have been measured. The power consumption of complete RF front-end is 176 mW. The on-chip DfT features are helpful in reduction of overall test cost and time in volume production. The measurement results show the feasibility of DfT approach for multiband radio receiver design using standard CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abidi, A. A. (2007). The path to the software-defined radio receiver. IEEE Journal of Solid-State Circuits, 42(5), 954–966. doi:10.1109/JSSC.2007.894307.

    Article  Google Scholar 

  2. Lakdawala, H., et al. (2006). Multi-band (1–6 GHz) sampled, sliding-IF receiver with discrete-time-filtering in 90 nm digital CMOS process. In Proceedings of the VLSI symposium conference.

  3. Muhammad, K., Bogdan, R. B., & Leipold, D. (2005). Digital RF processing: toward low-cost reconfigurable radios. IEEE Communications Magazine, (August), 105–113. doi:10.1109/MCOM.2005.1497564.

  4. Ramzan, R., Andersson, S., Dabrowski, J., & Svensson, C. (2007). A 1.4 V 25 mW inductorless wideband LNA in 0.13 μm CMOS. In IEEE International ISSCC 2007 (pp. 424–425). San Fransico.

  5. Andersson, S., Drugge, O., & Svensson, C. (2003). Wideband LNA for a multistandard wireless receiver in 0.18 μm CMOS. In Proceedings of ESSCIRC 2003 Conference (pp. 655–658).

  6. Bruccoleri, F., Klumperink, E. A. M., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal-noise canceling. Journal of Solid State Circuits, 39, 275–282. doi:10.1109/JSSC.2003.821786.

    Article  Google Scholar 

  7. Jakonis, D., Folkesson, K., Dabrowski, J., Eriksson, P., & Svensson, C. (2005). A 2.4-GHz RF sampling receiver front-end in 0.18 μm CMOS. IEEE Journal of Solid State Circuits, 40, 1265–1277. doi:10.1109/JSSC.2005.848027.

    Article  Google Scholar 

  8. Andersson, S., Konopacki, J., Dabrowski, J., & Svensson, C. (2006). SC Filter for RF Sampling and down conversion with wideband image rejection. Analog Integrated Circuits and Signal Processing, 49, 115–122. doi:10.1007/s10470-006-7833-2.

    Article  Google Scholar 

  9. Andersson, S., Ramzan, R., Dabrowski, J., & Svensson, C. (2007). Multiband direct RF-sampling receiver front-end for WLAN in 0.13 μm CMOS. In Proceedings of ECCTD 2007, Sevilla, Spain (pp. 168–171).

  10. Muhammad, K., & Staszewski, R. B. (2004). Direct RF sampling mixer with recursive filtering in charge domain. In Proceedings of the ISCAS 2004 conference (pp. 557–580).

  11. Youl, J., & Noh, S. (2006). A new approach for built-in self test of 4.5 to 5.5 GHz low noise amplifiers. Journal of Electronics and Telecommunication Research Institute, 28, 355–363. ETRI.

    Google Scholar 

  12. Vittoz, E., & Fellrath, J. (1977). CMOS analog integrated circuits based on weak inversion operation. IEEE Journal of Solid State Circuits, 12, 224–231. doi:10.1109/JSSC.1977.1050882.

    Article  Google Scholar 

  13. Aparin, V., Brown, G., & Larson, L. E. (2004). Linearization of CMOS LNA’s via optimum gate biasing. In Proceedings of ISCAS 2004 Conference (pp. 748–751).

  14. Janssens, J., et al. (1997). A 2.7-V CMOS broad-band low noise amplifier. In Proceedings of symposium of VLSI circuits 1997 conference (pp. 87–88).

  15. Andersson, S., Konopacki, J., Dabrowski, J., & Svensson, C. (2006). Noise analysis and noise estimation of an RF sampling front-end using an SC decimation filter. In Proceedings of the MIXDES Conference, 2006.

  16. Razavi, B. (2001). Design of Analog CMOS Integrated Circuits. NY: McGraw-Hill.

    Google Scholar 

  17. Jakonis D., Dabrowski J., & Svensson C. (2003). Noise analysis of downconversion sampling mixer. In Proceedings of ECCTD 2003, Krakow, Poland (pp. 181–184).

  18. Arkesteijn, V. J., Klumperink, E., & Nauta, B. (2006). Jitter requirements of the sampling clock in software radio receivers. IEEE Transactions on Circuits and Systems II, 53(2), 90–94. doi:10.1109/TCSII.2005.856893.

    Article  Google Scholar 

  19. Ramzan, R., & Dabrowski, J. (2006). CMOS RF/DC voltage detector for on-chip test. In Proceedings of the IEEE multitopic conference (INMIC) 2006 (pp. 472–476).

  20. Ramzan, R., & Dabrowski, J. (2006). CMOS blocks for on-chip RF test. International Journal of Analog Integrated Circuits and Signal Processing, 49, 151–160.

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to ACREO AB, Norrkoping, Sweden for providing us the access to there measurement lab and the assistance of Wasim Muhammad in the layout of LNA and RF test attenuator is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashad Ramzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramzan, R., Andersson, S., Dabrowski, J. et al. Multiband RF-sampling receiver front-end with on-chip testability in 0.13 μm CMOS. Analog Integr Circ Sig Process 61, 115–127 (2009). https://doi.org/10.1007/s10470-009-9286-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9286-x

Keywords

Navigation