Skip to main content

Ultra-Wideband Direct RF Receiver Analog Front-End

  • Chapter
  • First Online:
Multi-Gigahertz Nyquist Analog-to-Digital Converters

Abstract

The challenge to continue increasing the RF sampling ADC sample rate and bandwidth, to enable next generation ultra-wideband applications, does not lie only with the converter core. While time-interleaving can enhance the sample rate, the same cannot be said about the bandwidth, which should be extended by the front end preceding the ADC, while maximizing the spectral purity and limiting the excess power consumption. This chapter first revisits the problem of extending the bandwidth beyond several tens of GHz and discusses the major challenges along with a prior art overview. Furthermore, a new ultra-wideband highly integrated analog front end is introduced, and its innovative performance-advancing features are discussed in detail. Finally, the experimental verification of the prototype front end in 16nm FinFET CMOS, including the complete measurement setup, measured results, and a state-of-the-art comparison, is presented and discussed.

Special thanks go to Dr. Eng. Gabriele Manganaro, MediaTek USA Inc., Woburn, MA, USA (previously with Analog Devices Inc., Wilmington, MA, USA), for enabling and contributing to the work covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Extracted simulations with industry-approved 16 nm FinFET ESDs show an HD3 of −81 dB for a 500–600 mVpp,diff input at a 5 GHz frequency, which drops to −72 dB at 20 GHz.

  2. 2.

    Whether in a direct interleaving [101] or in a re-sampling scheme [159], the concept and limitations of the fixed unity gain remain the same.

  3. 3.

    The swing at the input then goes as high as about 1.1 Vpp,diff (3.6â‹…0.3 Vpp,diff) for 11 dB attenuation.

References

  1. B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd edn. (McGraw-Hill Education, 2017)

    Google Scholar 

  2. A.M. Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, J. Brunsilius, P.R. Derounian et al., A 14 bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J. Solid-State Circuits 49(12), 2857–2867 (2014)

    Article  Google Scholar 

  3. A.M. Ali, H. Dinc, P. Bhoraskar, S. Bardsley, C. Dillon, M. Kumar, M. McShea, R. Bunch, J. Prabhakar, S. Puckett, A 12b 18GS/s RF sampling ADC with an integrated wideband track-and-hold amplifier and background calibration, in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2020), pp. 250–252

    Google Scholar 

  4. B. Vaz, A. Lynam, B. Verbruggen, A. Laraba, C. Mesadri, A. Boumaalif, J. Mcgrath, U. Kamath, R. De Le Torre, A. Manlapat et al., A 13b 4GS/s digitally assisted dynamic 3-stage asynchronous pipelined-SAR ADC, in 2017 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2017), pp. 276–277

    Google Scholar 

  5. B. Vaz, B. Verbruggen, C. Erdmann, D. Collins, J. Mcgrath, A. Boumaalif, E. Cullen, D. Walsh, A. Morgado, C. Mesadri et al., A 13bit 5GS/s ADC with time-interleaved chopping calibration in 16 nm FinFET, in 2018 IEEE Symposium on VLSI Circuits-(VLSI) (IEEE, Piscataway, 2018), pp. 99–100

    Google Scholar 

  6. A.T. Ramkaj, J.C.P. Ramos, M.J. Pelgrom, M.S. Steyaert, M. Verhelst, F. Tavernier, A 5-GS/s 158.6-mW 9.4-ENOB passive-sampling time-interleaved three-stage pipelined-SAR ADC with analog-digital corrections in 28-nm CMOS. IEEE J. Solid-State Circuits 55(6), 1553–1564 (2020)

    Google Scholar 

  7. S. Devarajan, L. Singer, D. Kelly, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray et al., A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology. IEEE J. Solid-State Circuits 52(12), 3204–3218 (2017)

    Article  Google Scholar 

  8. S. Devarajan, L. Singer, D. Kelly, S. Kosic, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir et al., A 12b 10GS/s interleaved pipeline ADC in 28 nm CMOS technology, in 2017 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2017), pp. 288–289

    Google Scholar 

  9. M. Straayer, J. Bales, D. Birdsall, D. Daly, P. Elliott, B. Foley, R. Mason, V. Singh, X. Wang, A 4GS/s time-interleaved RF ADC in 65 nm CMOS with 4GHz input bandwidth, in 2016 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2016), pp. 464–465

    Google Scholar 

  10. J. Wu, A. Chou, T. Li, R. Wu, T. Wang, G. Cusmai, S.-T. Lin, C.-H. Yang, G. Unruh, S.R. Dommaraju et al., A 4GS/s 13b pipelined ADC with capacitor and amplifier sharing in 16 nm CMOS, in 2016 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2016), pp. 466–467

    Google Scholar 

  11. A.M. Ali, H. Dinc, P. Bhoraskar, S. Puckett, A. Morgan, N. Zhu, Q. Yu, C. Dillon, B. Gray, J. Lanford et al., A 14-bit 2.5GS/s and 5GS/s RF sampling ADC with background calibration and dither, in 2016 IEEE Symposium on VLSI Circuits-(VLSI) (IEEE, Piscataway, 2016), pp. 1–2

    Google Scholar 

  12. T. Ali, E. Chen, H. Park, R. Yousry, Y.-M. Ying, M. Abdullatif, M. Gandara, C.-C. Liu, P.-S. Weng, H.-S. Chen et al., A 460mW 112Gb/s DSP-based transceiver with 38dB loss compensation for next-generation data centers in 7 nm FinFET technology, in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2020), pp. 118–120

    Google Scholar 

  13. A. Ramkaj, A. Cantoni, G. Manganaro, S. Devarajan, M. Steyaert, F. Tavernier, A 30GHz-BW <-57dB-IM3 direct RF receiver analog front end in 16 nm FinFET, in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI) (IEEE, Piscataway, 2022), pp. 100–101

    Google Scholar 

  14. G. Manganaro, A. Ramkaj, F. Tavernier, Amplifiers for RF ADCs. Mar. 24 2022, U.S. Patent App. 17/031,426

    Google Scholar 

  15. A.M.A. Ali, H. Dinc, P. Bhoraskar, S. Bardsley, C. Dillon, M. McShea, J.P. Periathambi, S. Puckett, A 12-b 18-GS/s RF sampling ADC with an integrated wideband track-and-hold amplifier and background calibration. IEEE J. Solid-State Circuits 55(12), 3210–3224 (2020)

    Article  Google Scholar 

  16. K. Zheng, Y. Frans, S.L. Ambatipudi, S. Asuncion, H.T. Reddy, K. Chang, B. Murmann, An inverter-based analog front-end for a 56-Gb/s PAM-4 wireline transceiver in 16-nm CMOS. IEEE Solid-State Circuits Lett. 1(12), 249–252 (2018)

    Article  Google Scholar 

  17. M. Pisati, F. De Bernardinis, P. Pascale, C. Nani, N. Ghittori, E. Pozzati, M. Sosio, M. Garampazzi, A. Milani, A. Minuti et al., A 243-mW 1.25–56-Gb/s continuous range PAM-4 42.5-dB IL ADC/DAC-based transceiver in 7-nm FinFET. IEEE J. Solid-State Circuits 55(1), 6–18 (2020)

    Google Scholar 

  18. J. Im, K. Zheng, C.H.A. Chou, L. Zhou, J.W. Kim, S. Chen, Y. Wang, H.W. Hung, K. Tan, W. Lin, A.B. Roldan, D. Carey, I. Chlis, R. Casey, A. Bekele, Y. Cao, D. Mahashin, H. Ahn, H. Zhang, Y. Frans, K. Chang, A 112-Gb/s PAM-4 long-reach wireline transceiver using a 36-way time-interleaved SAR ADC and inverter-based RX analog front-end in 7-nm FinFET. IEEE J. Solid-State Circuits 56(1), 7–18 (2021)

    Article  Google Scholar 

  19. B. Razavi, The bridged T-Coil [A circuit for all seasons]. IEEE Solid-State Circuits Mag. 7(4), 9–13 (2015)

    Article  Google Scholar 

  20. S. Cao, J.-H. Chun, S.G. Beebe, R.W. Dutton, ESD design strategies for high-speed digital and RF circuits in deeply scaled silicon technologies. IEEE Trans. Circuits Syst. I: Regul. Papers 57(9), 2301–2311 (2010)

    Article  MathSciNet  Google Scholar 

  21. A.B. Williams, F.J. Taylor, Electronic Filter Design Handbook (McGraw-Hill Education, 2006)

    Google Scholar 

  22. M.-S. Chen, C.-K.K. Yang, A 50–64 Gb/s serializing transmitter with a 4-Tap, LC-ladder-filter-based FFE in 65 nm CMOS technology. IEEE J. Solid-State Circuits 50(8), 1903–1916 (2015)

    Article  Google Scholar 

  23. S. Shekhar, J.S. Walling, D.J. Allstot, Bandwidth extension techniques for CMOS amplifiers. IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006)

    Article  Google Scholar 

  24. N. Rakuljic, C. Speir, E. Otte, J. Bray, C. Petersen, G. Manganaro, In-situ nonlinear calibration of a RF signal chain, in 2018 IEEE International Symposium on Circuits and Systems-(ISCAS) (IEEE, Piscataway, 2018), pp. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramkaj, A.T., Pelgrom, M.J.M., Steyaert, M.S.J., Tavernier, F. (2023). Ultra-Wideband Direct RF Receiver Analog Front-End. In: Multi-Gigahertz Nyquist Analog-to-Digital Converters. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-031-22709-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22709-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22708-0

  • Online ISBN: 978-3-031-22709-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics