Skip to main content
Log in

Simple Associative Γ-Conformal Algebras of Finite Type for a Torsion-Free Group Γ

  • Published:
Algebra and Logic Aims and scope

We study Γ-conformal algebras which are a discrete analog of conformal algebras in the sense of V. G. Kac. For a torsion-free group Γ, simple and semisimple associative Γ- conformal algebras of finite type are described and an analog of Wedderburn’s theorem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Kac, Vertex Algebras for Beginners, Univ. Lect. Ser., 10, Am. Math. Soc., Providence, RI (1996).

    MATH  Google Scholar 

  2. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B, 241, No. 2, 333-380 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. E. Borcherds, “Vertex algebras, Kac–Moody algebras, and the monster,” Proc. Natl. Acad. Sci. USA, 83, 3068-3071 (1986).

    Article  MathSciNet  Google Scholar 

  4. C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress Math. (Boston, Mass.), 112, Birkhauser, Basel (1993).

    Book  Google Scholar 

  5. I. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston (1988).

    MATH  Google Scholar 

  6. A. D’Andrea and V. G. Kac, “Structure theory of finite conformal algebras,” Sel. Math., New Ser., 4, No. 3, 377-418 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Bakalov, A. D’Andrea, and V. G. Kac, “Theory of finite pseudoalgebras,” Adv. Math., 162, No. 1, 1-140 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Zelmanov, “On the structure of conformal algebras,” Contemp. Math., 264, Am. Math. Soc., Providence, RI (2000), pp. 139-153.

    Google Scholar 

  9. P. S. Kolesnikov, “Simple associative conformal algebras of linear growth,” J. Alg., 295, No. 1, 247-268 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  10. M. I. Golenishcheva and V. G. Kac, “Γ-conformal algebras,” J. Math. Phys., 39, No. 4, 2290-2305 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Li, “On certain generalizations of twisted affine Lie algebras and quasimodules for Γ-vertex algebras,” J. Pure Appl. Alg., 209, No. 3, 853-871 (2007).

    Article  MATH  Google Scholar 

  12. V. Yu. Gubarev and P. S. Kolesnikov, “Embedding of dendriform algebras into Rota–Baxter algebras,” Cent. Eur. J. Math., 11, No. 2, 226-245 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  13. P. S. Kolesnikov, “Varieties of dialgebras and conformal algebras,” Sib. Mat. Zh., 49, No. 2, 323-340 (2008).

    MATH  MathSciNet  Google Scholar 

  14. P. S. Kolesnikov, “On irreducible algebras of conformal endomorphisms over a linear algebraic group,” in Contemporary Mathematics and Its Applications, No. 60, Algebra [in Russian] (2008), pp. 42-56.

  15. E. N. Poroshenko, “Bases for partially commutative Lie algebras,” Algebra Logika, 50, No. 5, 595-614 (2011).

    MathSciNet  Google Scholar 

  16. G. Duchamp and D. Krob, “Free partially commutative structures,” J. Alg., 156, No. 2, 318-361 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  17. R. E. Block, “Determination of the differentiably simple rings with a minimal ideal,” Ann. Math. (2), 90, No. 3, 433-459 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  18. E. C. Posner, “Differentiably simple rings,” Proc. Am. Math. Soc., 11, No. 3, 337-343 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Kolesnikov, “Identities of conformal algebras and pseudoalgebras,” Commun. Alg., 34, No. 6, 1965-1979 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Lang, Algebra, Addison-Wesley, Reading, Mass. (1965).

    MATH  Google Scholar 

  21. I. N. Herstein, Noncommutative Rings, The Carus Math. Monogr., 15, Math. Ass. Am. (1968).

  22. R. B. Reisel, “A generalization of the Wedderburn–Malcev theorem to infinite dimensional algebras,” Proc. Am. Math. Soc., 7, 493-499 (1956).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Gubarev.

Additional information

Supported by RFBR, project No. 12-01-33031.

Translated from Algebra i Logika, Vol. 52, No. 5, pp. 559-581, September-October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubarev, V.Y. Simple Associative Γ-Conformal Algebras of Finite Type for a Torsion-Free Group Γ. Algebra Logic 52, 371–386 (2013). https://doi.org/10.1007/s10469-013-9249-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-013-9249-2

Keywords

Navigation