Skip to main content
Log in

Computably enumerable sets and related issues

  • Published:
Algebra and Logic Aims and scope

A topical direction in the theory of algorithms is studying reducibilities of arithmetic sets. Post defined concepts of m-, tt-, and T-reducibilities of arithmetic sets; subsequently, other kinds of reducibilities were introduced. A T-reducibility is being studied quite intensively today. Here a number of remarkable results were obtained. However, many questions concerning T-reducibility still await a solution. Progress in tt-reducibility is less noticeable. For an m-reducibility, exhaustive solutions were derived in several directions—especially if consideration was limited to computably enumerable sets. In the present review, we consider different aspects associated with computably enumerable sets and m-reducibility. Among these are an algebraic description of the structure of these formations both in upper and lower parts, definability, decidability problems, and so on. Many of the results cited in the paper are widely scattered over the literature. This makes it impossible to conceptualize the overall picture and spectrum of available investigations. It is also worth mentioning that a series of books and papers are not easily accessible to domestic specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Mal’tsev, Algorithms and Recursive Functions [in Russian], 2nd edn., Nauka, Moscow (1986).

    Google Scholar 

  2. V. A. Uspenskii, Lectures on Computable Functions [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  3. Yu. L. Ershov, Theory of Numerations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  4. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  5. P. Odifreddi, Classical Recursion Theory, Vol. 1, North-Holland, Amsterdam (1989); Vol. 2, Elsevier, Amsterdam (1999).

  6. A. N. Degtev, Enumerable Sets and Reducibilities, TyumGU, Tyumen (1988).

    Google Scholar 

  7. R. I. Soare, Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Persp. Math. Log., Omega Ser., Springer, Berlin (1987).

  8. J. R. Shoenfield, Degrees of Unsolvability, North-Holland Math. Stud., 2, Elsevier, New York (1971).

    Google Scholar 

  9. E. L. Post, “Recursively enumerable sets of positive integers and their decision problems,” Bull. Am. Math. Soc., 50, No. 5, 284–316 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. A. Cholak, “The global structure of computably enumerable sets,” in Cont. Math., 257, Am. Math. Soc., Providence, RI (2000), pp. 61–72.

  11. P. Cholak, R. Downey, and M. Stob, “Automorphisms of the lattice of recursively enumerable sets: Promptly simple sets,” Trans. Am. Math. Soc., 332, No. 2, 555–570 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. A. Cholak and L. A. Harrington, Definable encodings in the computably enumerable sets, Bull. Symb. Log., 6, No. 2, 185–196 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. A. Cholak and L. A. Harrington, “Isomorphisms of splits of computably enumerable sets,” J. Symb. Log., 68, No. 3, 1044–1064 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Harrington and R. I. Soare, “Post’s program and incomplete recursively enumerable sets,” Proc. Natl. Acad. Sci., USA, 88, No. 22, 10242–10246 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Harrington and R. I. Soare, “Definability, automorphisms, and dynamic properties of computably enumerable sets,” Bull. Symb. Log., 2, No. 2, 199–213 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Harrington and R. I. Soare, “Dynamic properties of computably enumerable sets,” in London Math. Soc. Lect. Note Ser., 224, Cambridge Univ. Press, Cambridge (1996), pp. 105–121.

  17. R. I. Soare, “An overview of the computably enumerable sets,” in Handbook of Computability Theory, Stud. Log. Found. Math., 140, Elsevier, Amsterdam (1999), pp. 199–248.

  18. R. I. Soare, “The history and concept of computability,” in Handbook of Computability Theory, Stud. Log. Found. Math., 140, Elsevier, Amsterdam (1999), pp. 3–36.

  19. R. I. Soare, “Extensions, automorphisms, and definability,” in Cont. Math., 257, Am. Math. Soc., Providence, RI (2000), pp. 279–307.

  20. A. H. Lachlan, “On the lattice of recursively enumerable sets,” Trans. Am. Math. Soc., 130, No. 1, 1–37 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. F. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication,” J. Symb. Log., 23, No. 3, 309–316 (1958).

    Article  MathSciNet  Google Scholar 

  22. A. A. Muchnik, “On the unsolvability of the problem of reducibility in the theory of algorithms,” Dokl. Akad. Nauk SSSR, 108, No. 2, 194–197 (1956).

    MathSciNet  MATH  Google Scholar 

  23. S. D. Denisov, “On m-degrees of recursively enumerable sets,” Algebra Logika, 9, No. 4, 422–427 (1970).

    Article  MathSciNet  Google Scholar 

  24. G. E. Sacks, On degrees less than 0′, Ann. Math. (2), 77, No. 2, 211–231 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu. L. Ershov, “Hypersimple m-degrees,” Algebra Logika, 8, No. 5, 523–552 (1969).

    Article  MATH  Google Scholar 

  26. A. N. Degtev, “m-Powers of simple sets,” Algebra Logika, 11, No. 2, 130–139 (1972).

    Article  MathSciNet  Google Scholar 

  27. A. H. Lachlan, “Recursively enumerable many-one degrees,” Algebra Logika, 11, No. 3, 326–358 (1972).

    Article  MathSciNet  Google Scholar 

  28. A. H. Lachlan, “Two theorems on many-one degrees of recursively enumerable sets,” Algebra Logika, 11, No. 2, 216–229 (1972).

    Article  MathSciNet  Google Scholar 

  29. G. N. Kobzev, “btt-Reducibility. II,” Algebra Logika, 12, No. 4, 433–444 (1973).

    Article  MathSciNet  Google Scholar 

  30. W. Maass, “Characterization of recursively enumerable sets with supersets effectively isomorphic to all recursively enumerable sets,” Trans. Am. Math. Soc., 279, No. 1, 311–336 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Maass and M. Stob, “The intervals of the lattice of recursively enumerable sets determined by major subsets,” Ann. Pure Appl. Log., 24, No. 2, 189–212 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. W. Robinson, “Simplicity of recursively enumerable sets,” J. Symb. Log., 32, No. 2, 162–172 (1967).

    Article  MATH  Google Scholar 

  33. P. A. Cholak and A. Nies, “Atomless r-maximal sets,” Isr. J. Math., 113, 305–322 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  34. D. A. Martin, “A theorem on hyperhypersimple sets,” J. Symb. Log., 28, No. 4, 273–278 (1963).

    Article  Google Scholar 

  35. D. A. Martin, “Classes of recursively enumerated sets and degrees of unsolvability,” Z. Math. Log. Grund. Math., 12, No. 4, 295–310 (1966).

    Article  MATH  Google Scholar 

  36. J. S. Ullian, “A theorem on maximal sets,” Notre Dame J. Formal Log., 2, No. 4, 222–223 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  37. R. W. Robinson, “A dichotomy of the recursively enumerable sets,” Z. Math. Log. Grund. Math., 14, No. 4, 339–356 (1968).

    Article  MATH  Google Scholar 

  38. A. H. Lachlan, “Degrees of recursively enumerable sets which have no maximal supersets,” J. Symb. Log., 33, No. 3, 431–443 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  39. C. E. Yates, “Recursively enumerable sets and retracing functions,” Z. Math. Log. Grund. Math., 8, No. 4, 331–345 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  40. J. R. Shoenfield, “Degrees of classes of RE sets,” J. Symb. Log., 41, No. 3, 695–696 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Lerman, “Some theorems on r-maximal sets and major subsets of recursively enumerable sets,” J. Symb. Log., 36, No. 2, 193–215 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Lerman and R. I. Soare, “A decidable fragment of the elementary theory of the lattice of recursively enumerable sets,” Trans. Am. Math. Soc., 257, No. 1, 1–37 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. H. Lachlan, “A note on universal sets,” J. Symb. Log., 31, No. 4, 573–574 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  44. S. D. Denisov, “The structure of an upper semilattice of recursively enumerable m-degrees and related problems. 1,” Algebra Logika, 17, No. 6, 643–683 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu. L. Ershov, “The upper semilattice of numerations of a finite set,” Algebra Logika, 14, No. 3, 258–284 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  46. E. A. Palyutin, “Supplement to Yu. L. Ershov’s article ‘The upper semilattice of numerations of a finite set,’” Algebra Logika, 14, No. 3, 284–287 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu. L. Ershov, “Positive equivalences,” Algebra Logika, 10, No. 6, 620–650 (1971).

    Article  Google Scholar 

  48. A. N. Degtev, “On m-degrees of supersets of simple sets,” Mat. Zametki, 23, No. 6, 889–893 (1978).

    MathSciNet  MATH  Google Scholar 

  49. Yu. L. Ershov, “Hypersimple m-degrees,” Algebra Logika, 8, No. 5, 523–552 (1969).

    Article  MATH  Google Scholar 

  50. A. N. Degtev, “On tt- and m-degrees,” Algebra Logika, 12, No. 2, 143–161 (1973).

    Article  MathSciNet  Google Scholar 

  51. Yu. L. Ershov and I. A. Lavrov, “Upper semilattice L(γ),” Algebra Logika, 12, No. 2, 167–189 (1973).

    Article  Google Scholar 

  52. K. Ho and F. Stephan, Simple Sets and Strong Reducibilities, Math. Inst., Univ. Heidelberg, Heidelberg (1999).

  53. A. H. Lachlan, “The elementary theory of recursively enumerable sets,” Duke Math. J., 35, No. 1, 123–146 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  54. V. V. V’yugin, “Segments of recursively enumerable m-degrees,” Algebra Logika, 13, No. 6, 635–654 (1974).

    Google Scholar 

  55. I. A. Lavrov, “A property of creative sets,” Algebra Logika, 35, No. 3, 294–307 (1996).

    Article  MathSciNet  Google Scholar 

  56. L. A. Harrington and A. Nies, “Coding in the partial order of enumerable sets,” Adv. Math., 133, No. 1, 133–162 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  57. A. N. Degtev, “Solvability of the ∀∃-theory of a certain factor-lattice of recursively enumerable sets,” Algebra Logika, 17, No. 2, 134–143 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  58. E. Herrmann, “On the ∀∃-theory of the factor lattice by the major subset relation,” in London Math. Soc. Lect. Note Ser., 224, Cambridge Univ. Press, Cambridge (1996), pp. 139–166.

  59. A. Nies, Coding Method in Computability Theory and Complexity Theory, Habilitationsschrift, Heidelberg (1998).

    Google Scholar 

  60. L. A. Harrington, “The undecidability of the lattice of recursively enumerable sets,” handwritten notes (1983).

  61. E. Herrmann, “The undecidability of the elementary theory of the lattice of recursively enumerable sets,” in Math. Res., 20, Akademie-Verlag, Berlin (1984), pp. 66–72.

  62. A. Nies, “The last question on recursively enumerable many-one degrees,” Algebra Logika, 33, No. 5, 550–563 (1994).

    Article  MathSciNet  Google Scholar 

  63. A. Nies, “Model theory of the computably enumerable many-one degrees,” Log. J. IGPL, 8, No. 5, 701–706 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  64. A. N. Degtev, “Several results on upper semilattices and m-degrees,” Algebra Logika, 18, No. 6, 664–697 (1979).

    Article  MathSciNet  Google Scholar 

  65. A. Nies, “Undecidable fragments of elementary theories,” Alg. Univ., 35, No. 1, 8–33 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  66. R. M. Smullyan, Theory of Formal Systems, Ann. Math. Stud., 47, Princeton Univ. Press, Princeton, NJ (1961).

  67. Yu. L. Ershov and I. A. Lavrov, “On computable enumerations. II,” Algebra Logika, 8, No. 1, 65–71 (1969).

  68. A. A. Muchnik, “Isomorphism of systems of recursively enumerable sets with effective properties,” Trudy Mosk. Mat. Obshch., 7, 407–412 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Algebra i Logika, Vol. 50, No. 6, pp. 733-758, November-December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrov, I.A. Computably enumerable sets and related issues. Algebra Logic 50, 494–511 (2012). https://doi.org/10.1007/s10469-012-9161-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-012-9161-1

Keywords

Navigation