Skip to main content

Bounded Reducibility for Computable Numberings

  • Conference paper
  • First Online:
Computing with Foresight and Industry (CiE 2019)

Abstract

The theory of numberings gives a fruitful approach to studying uniform computations for various families of mathematical objects. The algorithmic complexity of numberings is usually classified via the reducibility \(\le \) between numberings. This reducibility gives rise to an upper semilattice of degrees, which is often called the Rogers semilattice. For a computable family S of c.e. sets, its Rogers semilattice R(S) contains the \(\le \)-degrees of computable numberings of S. Khutoretskii proved that R(S) is always either one-element, or infinite. Selivanov proved that an infinite R(S) cannot be a lattice.

We introduce a bounded version of reducibility between numberings, denoted by \(\le _{bm}\). We show that Rogers semilattices \(R_{bm}(S)\), induced by \(\le _{bm}\), exhibit a striking difference from the classical case. We prove that the results of Khutoretskii and Selivanov cannot be extended to our setting: For any natural number \(n\ge 2\), there is a finite family S of c.e. sets such that its semilattice \(R_{bm}(S)\) has precisely \(2^n-1\) elements. Furthermore, there is a computable family T of c.e. sets such that \(R_{bm}(T)\) is an infinite lattice.

The work was supported by Nazarbayev University Faculty Development Competitive Research Grants N090118FD5342. The first author was partially supported by the grant of the President of the Russian Federation (No. MK-1214.2019.1). The third author was partially supported by the program of fundamental scientific researches of the SB RAS No. I.1.1, project No. 0314-2019-0002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambos-Spies, K., Badaev, S., Goncharov, S.: Inductive inference and computable numberings. Theor. Comput. Sci. 412(18), 1652–1668 (2011). https://doi.org/10.1016/j.tcs.2010.12.041

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, U., Sorbi, A.: Joins and meets in the structure of ceers. Computability (2018). https://doi.org/10.3233/COM-180098, published online

  3. Badaev, S., Goncharov, S.: Computability and numberings. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 19–34. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_2

    Chapter  Google Scholar 

  4. Badaev, S.A.: Computable enumerations of families of general recursive functions. Algebra Logic 16(2), 83–98 (1977). https://doi.org/10.1007/BF01668593

    Article  MathSciNet  MATH  Google Scholar 

  5. Badaev, S.A.: Minimal numerations of positively computable families. Algebra Logic 33(3), 131–141 (1994). https://doi.org/10.1007/BF00750228

    Article  MathSciNet  MATH  Google Scholar 

  6. Badaev, S.A., Goncharov, S.S.: Theory of numberings: open problems. In: Cholak, P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and Its Applications. Contemporary Mathematics, vol. 257, pp. 23–38. American Mathematical Society, Providence (2000). https://doi.org/10.1090/conm/257/04025

  7. Badaev, S.A., Lempp, S.: A decomposition of the Rogers semilattice of a family of D.C.E. sets. J. Symb. Logic 74(2), 618–640 (2009). https://doi.org/10.2178/jsl/1243948330

    Article  MathSciNet  MATH  Google Scholar 

  8. Bazhenov, N., Mustafa, M., Yamaleev, M.: Elementary theories and hereditary undecidability for semilattices of numberings. Arch. Math. Logic (2018). https://doi.org/10.1007/s00153-018-0647-y, published online

  9. Case, J., Jain, S., Stephan, F.: Effectivity questions for Kleene’s recursion theorem. Theor. Comput. Sci. 733, 55–70 (2018). https://doi.org/10.1016/j.tcs.2018.04.036

    Article  MathSciNet  MATH  Google Scholar 

  10. Ershov, Y.L.: Enumeration of families of general recursive functions. Sib. Math. J. 8(5), 771–778 (1967). https://doi.org/10.1007/BF01040653

    Article  MATH  Google Scholar 

  11. Ershov, Y.L.: On computable enumerations. Algebra Logic 7(5), 330–346 (1968). https://doi.org/10.1007/BF02219286

    Article  MathSciNet  MATH  Google Scholar 

  12. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)

    MATH  Google Scholar 

  13. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory. Studies in Logic and the Foundations of Mathematics, vol. 140, pp. 473–503. North-Holland, Amsterdam (1999). https://doi.org/10.1016/S0049-237X(99)80030-5

  14. Friedberg, R.M.: Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. J. Symb. Logic 23(3), 309–316 (1958). https://doi.org/10.2307/2964290

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedman, H., Stanley, L.: A Borel reducibility theory for classes of countable structures. J. Symb. Log. 54(3), 894–914 (1989). https://doi.org/10.2307/2274750

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, S.: Invariant Descriptive Set Theory. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  17. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I. Monatsh. Math. Phys. 38(1), 173–198 (1931). https://doi.org/10.1007/BF01700692

    Article  MathSciNet  MATH  Google Scholar 

  18. Goncharov, S.S.: Computable single-valued numerations. Algebra Logic 19(5), 325–356 (1980). https://doi.org/10.1007/BF01669607

    Article  MATH  Google Scholar 

  19. Goncharov, S.S.: Positive numerations of families with one-valued numerations. Algebra Logic 22(5), 345–350 (1983). https://doi.org/10.1007/BF01982111

    Article  MATH  Google Scholar 

  20. Goncharov, S.S., Lempp, S., Solomon, D.R.: Friedberg numberings of families of \(n\)-computably enumerable sets. Algebra Logic 41(2), 81–86 (2002). https://doi.org/10.1023/A:1015352513117

    Article  MathSciNet  MATH  Google Scholar 

  21. Goncharov, S.S., Sorbi, A.: Generalized computable numerations and nontrivial Rogers semilattices. Algebra Logic 36(6), 359–369 (1997). https://doi.org/10.1007/BF02671553

    Article  MathSciNet  MATH  Google Scholar 

  22. Herbert, I., Jain, S., Lempp, S., Mustafa, M., Stephan, F.: Reductions between types of numberings (2017, preprint)

    Google Scholar 

  23. Jain, S., Stephan, F.: Numberings optimal for learning. J. Comput. Syst. Sci. 76(3–4), 233–250 (2010). https://doi.org/10.1016/j.jcss.2009.08.001

    Article  MathSciNet  MATH  Google Scholar 

  24. Khutoretskii, A.B.: On the cardinality of the upper semilattice of computable enumerations. Algebra Logic 10(5), 348–352 (1971). https://doi.org/10.1007/BF02219842

    Article  MathSciNet  Google Scholar 

  25. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)

    MATH  Google Scholar 

  26. Kolmogorov, A.N., Uspenskii, V.A.: On the definition of an algorithm. Uspehi Mat. Nauk 13(4), 3–28 (1958). (in Russian)

    MathSciNet  MATH  Google Scholar 

  27. Lachlan, A.H.: Standard classes of recursively enumerable sets. Z. Math. Logik Grundlagen Math. 10(2–3), 23–42 (1964). https://doi.org/10.1002/malq.19640100203

    Article  MathSciNet  MATH  Google Scholar 

  28. Lachlan, A.H.: On recursive enumeration without repetition. Z. Math. Logik Grundlagen Math. 11(3), 209–220 (1965). https://doi.org/10.1002/malq.19650110305

    Article  MathSciNet  MATH  Google Scholar 

  29. Mal’cev, A.I.: Positive and negative numerations. Sov. Math. Dokl. 6, 75–77 (1965)

    Google Scholar 

  30. Maslova, T.M.: Bounded \(m\)-reducibilities. In: Golunkov, Y.V. (ed.) Veroyatnostnye Metody i Kibernetika, vol. XV, pp. 51–60. Kazan University, Kazan (1979). (in Russian), MR0577649

    Google Scholar 

  31. Ospichev, S.S.: Friedberg numberings in the Ershov hierarchy. Algebra Logic 54(4), 283–295 (2015). https://doi.org/10.1007/s10469-015-9349-2

    Article  MathSciNet  MATH  Google Scholar 

  32. Podzorov, S.Y.: Arithmetical \(D\)-degrees. Sib. Math. J. 49(6), 1109–1123 (2008). https://doi.org/10.1007/s11202-008-0107-8

    Article  MathSciNet  Google Scholar 

  33. Pour-El, M.B.: Gödel numberings versus Friedberg numberings. Proc. Am. Math. Soc. 15(2), 252–256 (1964). https://doi.org/10.2307/2034045

    Article  MathSciNet  MATH  Google Scholar 

  34. Rogers, H.: Gödel numberings of partial recursive functions. J. Symb. Logic 23(3), 331–341 (1958). https://doi.org/10.2307/2964292

    Article  MATH  Google Scholar 

  35. Selivanov, V.L.: Two theorems on computable numberings. Algebra Logic 15(4), 297–306 (1976). https://doi.org/10.1007/BF01875946

    Article  MATH  Google Scholar 

  36. Uspenskii, V.A.: Systems of denumerable sets and their enumeration. Dokl. Akad. Nauk SSSR 105, 1155–1158 (1958). (in Russian)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of the research contained in this paper was carried out while the first and the last authors were visiting the Department of Mathematics of Nazarbayev University, Astana. The authors wish to thank Nazarbayev University for its hospitality. The authors also thank the anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manat Mustafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazhenov, N., Mustafa, M., Ospichev, S. (2019). Bounded Reducibility for Computable Numberings. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics