Skip to main content
Log in

Reflection Groups and Rigidity of Quadratic Poisson Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this paper, we study the invariant theory of quadratic Poisson algebras. Let G be a finite group of the graded Poisson automorphisms of a quadratic Poisson algebra A. When the Poisson bracket of A is skew-symmetric, a Poisson version of the Shephard-Todd-Chevalley theorem is proved stating that the fixed Poisson subring AG is skew-symmetric if and only if G is generated by reflections. For many other well-known families of quadratic Poisson algebras, we show that G contains limited or even no reflections. This kind of Poisson rigidity result ensures that the corresponding fixed Poisson subring AG is not isomorphic to A as Poisson algebras unless G is trivial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alev, J., Farkas, D.R.: Finite group actions on poisson algebras. In: The Orbit Method in Geometry and Physics (Marseille, 2000), Progr. Math, vol. 213, pp 9–28. Birkhäuser, Boston (2003)

  2. Alev, J., Polo, P.: A rigidity theorem for finite group actions on enveloping algebras of semisimple Lie algebras. Adv. Math. 111(2), 208–226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belov-Kanel, A., Kontsevich, M.: Automorphisms of the Weyl algebra. Lett. Math. Phys. 74(2), 181–199 (2005). https://doi.org/10.1007/s11005-005-0027-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, D.J.: Polynomial Invariants of Finite Groups London Mathematical Society Lecture Note Series, vol. 190. Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/CBO9780511565809

    Book  Google Scholar 

  5. Borel, A.: Essays in the History of Lie Groups and Algebraic Groups History of Mathematics. vol. 21 American Mathematical Society, Providence, RI; London Mathematical Society. Cambridge (2001)

  6. Brown, K.A., Gordon, I.: Poisson orders, symplectic reflection algebras and representation theory. J. Reine Angew. Math. 559, 193–216 (2003). https://doi.org/10.1515/crll.2003.048

    MathSciNet  MATH  Google Scholar 

  7. Brown, K.A., Zhang, J.J.: Unimodular graded Poisson Hopf algebras. Bull. Lond. Math. Soc. 50(5), 887–898 (2018). https://doi.org/10.1112/blms.12194

    Article  MathSciNet  MATH  Google Scholar 

  8. Chevalley, C.: Invariants of finite groups generated by reflections. Amer. J. Math. 77, 778–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dixmier, J.: Sur les algèbres de Weyl. Bull. Soc. Math. France 96, 209–242 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferraro, L., Moore, W.F.: Differential graded algebra over quotients of skew polynomial rings by normal elements. Trans. Amer. Math. Soc. 373(11), 7755–7784 (2020). https://doi.org/10.1090/tran/8132

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaddis, J.: The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras. J. Pure Appl. Algebra 221(10), 2511–2524 (2017). https://doi.org/10.1016/j.jpaa.2016.12.036

    Article  MathSciNet  MATH  Google Scholar 

  12. Gaddis, J., Wang, X.: The Zariski cancellation problem for Poisson algebras. J. Lond. Math. Soc. (2) 101(3), 1250–1279 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodearl, K.R.: Semiclassical limits of quantized coordinate rings. In: Advances in ring theory, Trends Math. https://doi.org/10.1007/978-3-0346-0286-0∖_12, pp 165–204. Birkhäuser/Springer, Basel (2010)

  14. Kirkman, E., Kuzmanovich, J., Zhang, J.J.: Rigidity of graded regular algebras. Trans. Amer. Math. Soc. 360(12), 6331–6369 (2008). https://doi.org/10.1090/S0002-9947-08-04571-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirkman, E., Kuzmanovich, J., Zhang, J.J.: Shephard-Todd-Chevalley theorem for skew polynomial rings. Algebr. Represent. Theory 13(2), 127–158 (2010). https://doi.org/10.1007/s10468-008-9109-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirkman, E., Kuzmanovich, J., Zhang, J.J.: Invariant theory of finite group actions on down-up algebras. Transform. Groups 20(1), 113–165 (2015). https://doi.org/10.1007/s00031-014-9279-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Launois, S., Topley, L.: The orbit method for Poisson orders. Proc. Lond. Math. Soc. (3) 120(1), 65–94 (2020). https://doi.org/10.1112/plms.12287

    Article  MathSciNet  MATH  Google Scholar 

  18. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 347. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31090-4

    Google Scholar 

  19. Lü, J., Wang, X., Zhuang, G.: Universal enveloping algebras of Poisson Ore extensions. Proc. Amer. Math. Soc. 143(11), 4633–4645 (2015). https://doi.org/10.1090/S0002-9939-2015-12631-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Lü, J., Wang, X., Zhuang, G.: Homological unimodularity and calabi-Yau condition for Poisson algebras. Lett. Math. Phys. 107(9), 1715–1740 (2017). https://doi.org/10.1007/s11005-017-0967-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, J., Wang, S.Q., Wu, Q.S.: Twisted poincaré duality between Poisson homology and Poisson cohomology. J. Algebra 442, 484–505 (2015). https://doi.org/10.1016/j.jalgebra.2014.08.023

    Article  MathSciNet  MATH  Google Scholar 

  22. Neusel, M.D., Smith, L.: Invariant Theory of Finite Groups Mathematical Surveys and Monographs, vol. 94. American Mathematical Society, Providence, RI (2002). https://doi.org/10.1086/342122

    Google Scholar 

  23. Oh, S.Q.: Poisson enveloping algebras. Comm. Algebra 27(5), 2181–2186 (1999). https://doi.org/10.1080/00927879908826556

    Article  MathSciNet  MATH  Google Scholar 

  24. Oh, S.Q.: Poisson polynomial rings. Comm. Algebra 34(4), 1265–1277 (2006). https://doi.org/10.1080/00927870500454463

    Article  MathSciNet  MATH  Google Scholar 

  25. Polishchuk, A.: Algebraic geometry of Poisson brackets. J. Math. Sci. (New York) 84(5), 1413–1444 (1997). https://doi.org/10.1007/BF02399197. Algebraic geometry, 7

    Article  MathSciNet  MATH  Google Scholar 

  26. Przybysz, R.: On one class of exact Poisson structures. J. Math. Phys. 42(4), 1913–1920 (2001). https://doi.org/10.1063/1.1346588

    Article  MathSciNet  MATH  Google Scholar 

  27. Serre, J.P.: Groupes Finis D’automorphismes D’anneaux Locaux Réguliers. In: Colloque D’Algèbre (Paris, 1967), Exp. 8, p 11. Secrétariat mathématique, Paris (1968)

  28. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canadian J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith, S.P.: Can the Weyl algebra be a fixed ring. Proc. Amer. Math. Soc. 107(3), 587–589 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tikaradze, A.: The Weyl algebra as a fixed ring. Adv. Math. 345, 756–766 (2019). https://doi.org/10.1016/j.aim.2019.01.005

    Article  MathSciNet  MATH  Google Scholar 

  31. Tikaradze, A.: Derived invariants of the fixed ring of enveloping algebras of semisimple Lie algebras. Math. Z. 297(1-2), 475–481 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Umirbaev, U.: Universal enveloping algebras and universal derivations of Poisson algebras. J. Algebra 354, 77–94 (2012). https://doi.org/10.1016/j.jalgebra.2012.01.003

    Article  MathSciNet  MATH  Google Scholar 

  33. Vancliff, M.: The defining relations of quantum n × n matrices. J. London Math. Soc. (2) 52 (2), 255–262 (1995). https://doi.org/10.1112/jlms/52.2.255

    Article  MathSciNet  MATH  Google Scholar 

  34. Walton, C., Wang, X., Yakimov, M.: Poisson geometry and representations of PI 4-dimensional Sklyanin algebras. 1–52. arXiv:1802.06487 (2018)

  35. Walton, C., Wang, X., Yakimov, M.: Poisson geometry of PI three-dimensional Sklyanin algebras. Proc. Lond. Math. Soc. (3) 118(6), 1471–1500 (2019). https://doi.org/10.1112/plms.12220

    Article  MathSciNet  MATH  Google Scholar 

  36. Watanabe, K.: Certain invariant subrings are Gorenstein. I, II. Osaka. Math. J. 11, 1–8; ibid 11(1974), 379–388 (1974)

    MATH  Google Scholar 

  37. Xu, P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Comm. Math. Phys. 3(200), 545–560 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Akaki Tikaradze for pointing out his paper [31], which resolved one of the questions in an early draft of this paper, and his willingingess to allow the inclusion of Remark 5.13. The authors also appreciate the referee’s close reading and suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Gaddis.

Additional information

Presented by: Kenneth Goodearl

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The third author was partially supported by Simons Collaboration Grant No. 688403

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddis, J., Veerapen, P. & Wang, X. Reflection Groups and Rigidity of Quadratic Poisson Algebras. Algebr Represent Theor 26, 329–358 (2023). https://doi.org/10.1007/s10468-021-10096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-021-10096-0

Keywords

Mathematics Subject Classification (2010)

Navigation