Skip to main content
Log in

The Benson - Symonds Invariant for Permutation Modules

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In a recent paper, Dave Benson and Peter Symonds defined a new invariant γG(M) for a finite dimensional module M of a finite group G which attempts to quantify how close a module is to being projective. In this paper, we determine this invariant for permutation modules of the symmetric group corresponding to two-part partitions using tools from representation theory and combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem, A., Milgram, R.J.: Cohomology of Finite Groups, Volume 309 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  2. Benson, D., Symonds, P.: The non-projective part of the tensor powers of a module. J. London Math. Soc. 101(2), 828–856 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)

    Article  MathSciNet  Google Scholar 

  4. Erdmann, K.: Young modules for symmetric groups. J. Aust. Math. Soc. 71(2), 201–210 (2001). Special issue on group theory

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I sincerely acknowledge the constant help and guidance of my advisor Prof. David J. Hemmer. I would like to thank him for a careful reading of this article and his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Upadhyay.

Additional information

Presented by: Iain Gordon

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1 (Chu-Vandermonde identity)

$$\sum\limits_{i} {r \choose i}{s \choose n-i}={r+s \choose n}$$

This can be generalized to the following:

Lemma A.2

$$\sum\limits_{\substack {\mu \models r }}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}}={dp \choose r}$$

If we fix the number of parts of the composition then using the inclusion - exclusion principle, we have:

Lemma A.3

$$\sum\limits_{\substack {\mu \models r \\ \text{into \textit{d} parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}} = \sum\limits_{i=0}^{d} (-1)^{i}{d \choose i} {(d-i)p \choose r}$$

A more general form of the above Lemma would be the following:

Lemma A.4

$$ \sum\limits_{\substack {\mu \models r \\ \text{into \textit{d}+1 parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}}{a_{0} \choose \mu_{d+1}} = \sum\limits_{i=0}^{d} (-1)^{i}{d \choose i} \Bigg({(d-i)p+a_{0} \choose r}- {(d-i)p \choose r}\Bigg) $$

Adding Lemma A.3 and Lemma A.4 we get:

Lemma A.5

$$\sum\limits_{\substack {\mu \models r \\ \text{into \textit{d} parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}}+\sum\limits_{\substack {\mu \models r \\ \text{into \textit{d}+1 parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}}{a_{0} \choose \mu_{d+1}}$$
$$ = \sum\limits_{i=0}^{d} (-1)^{i}{d \choose i} {(d-i)p+a_{0} \choose r} $$

Note that in the above Lemma, the compositions with any part > p do not contribute to the sum. So if we were to enforce each part of the composition to be less than p then we only need to avoid the partitions with some part equal to p. Using inclusion-exclusion principle, we have:

Lemma A.6

$$ \sum\limits_{\substack {\mu \models jp+b_{0} \\ \text{into \textit{d} parts}\\ \text{each} < \text{p}}} {p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}}+\sum\limits_{\substack {\mu \models jp+b_{0} \\ \text{into \textit{d}+1 parts}\\ \text{each} < \text{p}}} {p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}}{a_{0} \choose \mu_{d+1}} $$
$$= \sum\limits_{h=0}^{j} (-1)^{h}{d \choose h} \sum\limits_{i=0}^{d-h} (-1)^{i} {d-h \choose i} {(d-h-i)p+a_{0} \choose (j-h)p+b_{0}} $$

Lemma A.7

$$\sum\limits_{i=0}^{n} (-1)^{i} {n \choose i}{n-i \choose m}=\left\{\begin{array}{lr} 1, & m= n\\ 0, & \text{otherwise} \end{array} \right. $$

Proof

$$ \begin{array}{@{}rcl@{}} \sum\limits_{i=0}^{n} (-1)^{i} {n \choose i}{n-i \choose m}&=&\sum\limits_{i=0}^{n} (-1)^{i} {n \choose m}{n-m \choose i}\\ &=&{n \choose m}\sum\limits_{i=0}^{n} (-1)^{i} {n-m \choose i}\\ &=& \left\{\begin{array}{lr} 1, & m= n\\ 0, & \text{otherwise} \end{array} \right.\\ \end{array} $$

Lemma A.8

$$(-1)^{m} \sum\limits_{i=m}^{k-1} (-1)^{i} {k-1 \choose i} {i \choose m} \sum\limits_{j=0}^{i-m} {i-m \choose j} {k-i \choose r-j} $$
$$=\left\{\begin{array}{lr} 1, & m=k-1, r=0,1\\ 0, & \text{otherwise} \end{array} \right. $$

Proof

$$(-1)^{m} \sum\limits_{i=m}^{k-1} (-1)^{i} {k-1 \choose i} {i \choose m} \sum\limits_{j=0}^{i-m} {i-m \choose j} {k-i \choose r-j}$$
$$ \begin{array}{@{}rcl@{}} &=& (-1)^{m} \sum\limits_{i=m}^{k-1} (-1)^{i} {k-1 \choose i} {i \choose m} {k-m \choose r} \text{ Using Lemma } A.1 \\ &=& (-1)^{m} {k-m \choose r} \sum\limits_{i=m}^{k-1} (-1)^{i} {k-1 \choose i} {i \choose m} \\ &=& (-1)^{m} {k-m \choose r} \sum\limits_{i=m}^{k-1} (-1)^{i} {k-1 \choose m} {k-1-m \choose i-m} \\ &=& (-1)^{m} {k-m \choose r} {k-1 \choose m} \sum\limits_{i=m}^{k-1} (-1)^{i} {k-1-m \choose i-m} \\ &=& (-1)^{m} {k-m \choose r} {k-1 \choose m} \sum\limits_{i=0}^{k-1-m} (-1)^{m+i} {k-1-m \choose i} \\ &=&\left\{\begin{array}{lr} 1, & m=k-1, r=0,1\\ 0, & \text{otherwise} \end{array} \right. \end{array} $$

Theorem A.9

$$k+ (k-1)\sum\limits_{\substack {\mu \models p \\ \text{into 2 parts}}} {p \choose \mu_{1}} {a_{0} \choose \mu_{2}}+\sum\limits_{d=2}^{k-1} {k-1 \choose d}\Bigg(\sum\limits_{\substack {\mu \models p \\ \text{into \textit{d} parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}} +$$
$$\sum\limits_{\substack {\mu \models p \\ \text{into \textit{d}+1 parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}} {a_{0} \choose \mu_{d+1}}\Bigg) $$
$$=1+{n-p \choose p} $$

Proof

Simplifying the sum on the left hand side using Lemma A.1 for the first part and Lemma A.3 and Lemma A.4 for the second part, we have

$$k+ (k-1)\Big({p+a_{0} \choose p}-1 \Big ) +\sum\limits_{d=2}^{k-1} {k-1 \choose d}\Bigg(\sum\limits_{i=0}^{d-1} (-1)^{i}{d \choose i} {(d-i)p \choose p} +$$
$$ \sum\limits_{i=0}^{d-1} (-1)^{i}{d \choose i} \Bigg({(d-i)p+a_{0} \choose p}- {(d-i)p \choose p}\Bigg) \Bigg) $$

Now simplifying the first part and using Lemma A.5 for the second part we get

$$ \begin{array}{@{}rcl@{}} &=&1+ (k-1){p+a_{0} \choose p} +\sum\limits_{d=2}^{k-1} {k-1 \choose d} \sum\limits_{i=0}^{d-1} (-1)^{i}{d \choose i} {(d-i)p+a_{0} \choose p} \\ &=&1+ \sum\limits_{d=1}^{k-1} {k-1 \choose d} \sum\limits_{i=0}^{d-1} (-1)^{i}{d \choose i} {(d-i)p+a_{0} \choose p} \end{array} $$
(1)

The coefficient of

$${mp+a_{0} \choose p}$$

in the above expansion is

$$\sum\limits_{i=0}^{k-1} (-1)^{i}{k-1 \choose m+i}{m+i \choose i}$$
$$=\sum\limits_{i=0}^{k-1} (-1)^{i}{k-1 \choose i}{k-1-i \choose m}$$

which is equal to 1 when m = k − 1 and 0 otherwise by Lemma A.7. So (1) reduces to

$$1+ {(k-1)p+a_{0} \choose p}$$

which is

$$1+{n-p \choose p}$$

Theorem A.10

$$ {a_{0} \choose r}+ \sum\limits_{d=1}^{k-1}{k-1 \choose d}\Bigg(\sum\limits_{\substack {\mu \models r \\ \text{into \textit{d} parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}} +$$
$$\sum\limits_{\substack {\mu \models r \\ \text{into \textit{d}+1 parts}}}{p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}} {a_{0} \choose \mu_{d+1}}\Bigg) $$
$$={n-p \choose r} $$

Proof

Simplifying the sum on the left hand side using Lemma A.3 and Lemma A.4, we have

$$ {a_{0} \choose r}+ \sum\limits_{d=1}^{k-1}{k-1 \choose d}\Bigg(\sum\limits_{i=0}^{d} (-1)^{i}{d \choose i} {(d-i)p \choose r}+$$
$$ \sum\limits_{i=0}^{d} (-1)^{i}{d \choose i} \Bigg({(d-i)p+a_{0} \choose r}- {(d-i)p \choose r}\Bigg) $$
$$ \begin{array}{@{}rcl@{}} &=&{a_{0} \choose r}+ \sum\limits_{d=1}^{k-1}{k-1 \choose d} \sum\limits_{i=0}^{d} (-1)^{i}{d \choose i}{(d-i)p+a_{0} \choose r} \\ &=&{a_{0} \choose r}+ \sum\limits_{d=1}^{k-1}{k-1 \choose d}\Bigg (\sum\limits_{i=0}^{d-1} (-1)^{i}{d \choose i}{(d-i)p+a_{0} \choose r}+ (-1)^{d}{a_{0} \choose r} \Bigg) \\ &=&{a_{0} \choose r} + \sum\limits_{d=1}^{k-1}{k - 1 \choose d} \sum\limits_{i=0}^{d-1} (-1)^{i}{d \choose i}{(d - i)p+a_{0} \choose r}+ \sum\limits_{d=1}^{k-1}{k-1 \choose d} (-1)^{d}{a_{0} \choose r} \end{array} $$
(2)

The coefficient of

$${mp+a_{0} \choose r}$$

in the expansion of the sum in the center is

$$\sum\limits_{i=0}^{k-1} (-1)^{i}{k-1 \choose m+i}{m+i \choose i}$$
$$=\sum\limits_{i=0}^{k-1} (-1)^{i}{k-1 \choose i}{k-1-i \choose m}$$

which is equal to 1 when m = k − 1 and 0 otherwise by Lemma A.7. So, (2) simplifies to

$$ \begin{array}{@{}rcl@{}} &=&{a_{0} \choose r}+{(k-1)p+a_{0} \choose r}-{a_{0} \choose r}\\ &=&{(k-1)p+a_{0} \choose r}\\ &=&{n-p \choose r}\\ \end{array} $$

Theorem A.11

$$ {\left( \begin{array}{c}k \\ q \end{array}\right)}{\left( \begin{array}{c}a_{0} \\ b_{0}\end{array}\right)}+\sum\limits_{d=1}^{k-1} {\left( \begin{array}{c}k-1 \\ d\end{array}\right)} \left( \sum\limits_{j=0}^{d} {\left( \begin{array}{c}k-d \\ q-j\end{array}\right)} \left( \sum\limits_{\substack{\mu \models jp+b_{0}\\ \text{into \textit{d} parts}\\ \text{each} < \text{p}}} {\left( \begin{array}{c}p \\ \mu_{1}\end{array}\right)}{\left( \begin{array}{c}p \\ \mu_{2}\end{array}\right)}{\cdots} {\left( \begin{array}{c}p \\ \mu_{d}\end{array}\right)}+\right.\right. $$
$$ \left.\left.\sum\limits_{\substack{\mu \models jp+b_{0} \\ \text{into \textit{d}+1 parts}\\ \text{each} < \text{p}}} {\left( \begin{array}{c}p \\ \mu_{1}\end{array}\right)}{\left( \begin{array}{c}p \\ \mu_{2}\end{array}\right)}{\cdots} {\left( \begin{array}{c}p \\ \mu_{d}\end{array}\right)}{\left( \begin{array}{c}a_{0} \\ \mu_{d+1}\end{array}\right)} \right) \right) $$
$$ ={\left( \begin{array}{c}(k-1)p+a_{0} \\ qp+b_{0}\end{array}\right)} + \left( \begin{array}{c}(k-1)p+a_{0} \\ (q-1)p+b_{0}\end{array}\right) $$

Proof

Using Lemma A.6 we have,

$$\sum\limits_{d=0}^{k-1} {\left( \begin{array}{c}k-1 \\ d\end{array}\right)}\left( \sum\limits_{j=0}^{d} {k-d \choose q-j} \left( \sum\limits_{\substack {\mu \models jp+b_{0} \\ \text{into \textit{d} parts}\\ \text{each} < \text{p}}} {p \choose \mu_{1}}{p \choose \mu_{2}}{\cdots} {p \choose \mu_{d}}+\right.\right. $$
$$ \left.\left.\sum\limits_{\substack {\mu \models jp+b_{0} \\ \text{into \textit{d}+1 parts}\\ \text{each} < \text{p}}} {\left( \begin{array}{c} p \\ \mu_{1}\end{array}\right)}{\left( \begin{array}{c}p \\ \mu_{2}\end{array}\right)}{\cdots} {\left( \begin{array}{c}p \\ \mu_{d}\end{array}\right)}{\left( \begin{array}{c}a_{0} \\ \mu_{d+1}\end{array}\right)} \right)\right) $$
$$=\sum\limits_{d=0}^{k-1} {\left( \begin{array}{c}k-1 \\ d\end{array}\right)} \sum\limits_{j=0}^{d} {\left( \begin{array}{c}k-d \\ q-j\end{array}\right)} \sum\limits_{h=0}^{j} (-1)^{h}{\left( \begin{array}{c}d \\ h\end{array}\right)} \sum\limits_{i=0}^{d-h} (-1)^{i} {\left( \begin{array}{c}d-h \\ i\end{array}\right)} {\left( \begin{array}{c}(d-h-i)p+a_{0} \\ (j-h)p+b_{0}\end{array}\right)} $$

For any m and s, the coefficient of

$$ \left( \begin{array}{c}mp+a_{0} \\sp+b_{0}\end{array}\right) $$

is

$$ (-1)^{m} \sum\limits_{i=m}^{k-1} (-1)^{i} {\left( \begin{array}{c}k-1 \\ i\end{array}\right)} {\left( \begin{array}{c}i \\m\end{array}\right)} \sum\limits_{j=0}^{i-m} {\left( \begin{array}{c}i-m \\ j\end{array}\right)} {\left( \begin{array}{c}k-i \\ q-s-j\end{array}\right)} $$

Using Lemma A.8, we can simplify our left hand side expression to

$$ ={\left( \begin{array}{c}(k-1)p+a_{0} \\ qp+b_{0}\end{array}\right)}+{\left( \begin{array}{c}(k-1)p+a_{0} \\ (q-1)p+b_{0}\end{array}\right)} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A. The Benson - Symonds Invariant for Permutation Modules. Algebr Represent Theor 25, 289–307 (2022). https://doi.org/10.1007/s10468-020-10022-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-020-10022-w

Keywords

Mathematics Subject Classification (2010)

Navigation