Skip to main content

Monomial Gorenstein algebras and the stably Calabi–Yau property


A celebrated result by Keller–Reiten says that 2-Calabi–Yau tilted algebras are Gorenstein and stably 3-Calabi–Yau. This note shows that the converse holds in the monomial case: a 1-Gorenstein monomial algebra and stably 3-Calabi–Yau is 2-Calabi–Yau tilted, moreover is Jacobian. We study the case of other stably Calabi–Yau Gorenstein monomial algebras.


  1. Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier 59(6), 2525–2590 (2009)

    MathSciNet  Article  Google Scholar 

  2. Amiot, C.: On generalized cluster categories, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich, (16-02), pp. 1–53 (2011)

  3. Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.G.: Gentle algebras arising from surface triangulations. Algebr. Number Theory 4(2), 201–229 (2010)

    MathSciNet  Article  Google Scholar 

  4. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, London Math. Soc. Student Texts, vol. 65. Cambridge University Press (2006)

  5. Baur, K., Marsh, R.: A geometric description of m-cluster categories. Trans. Amer. Math. Soc. 360(11), 5789–5803 (2008)

    MathSciNet  Article  Google Scholar 

  6. Beligiannis, A.: The homological theory of contravariantly finite subcategories: Auslander-buchweitz contexts Gorenstein categories and (co-)stabilization. Comm. Algebra 28(10), 4547–4596 (2000)

    MathSciNet  Article  Google Scholar 

  7. Beligiannis, A.: Relative homology, higher cluster-tilting theory and categorified Auslander-Iyama correspondence. J. Algebra 444, 367–503 (2015)

    MathSciNet  Article  Google Scholar 

  8. Burban, I., Iyama, O., Keller, B., Reiten, I.: Cluster tilting for one-dimensional hypersurface singularities. Adv. Math. 217(6), 2443–2484 (2008)

    MathSciNet  Article  Google Scholar 

  9. Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–518 (2006)

    MathSciNet  Article  Google Scholar 

  10. Buan, A., Marsh, R., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc. 359(1), 323–332 (2007)

    MathSciNet  Article  Google Scholar 

  11. Butler, M. C. R., Ringel, C. M.: Auslander-reiten sequences with few middle terms and applications to string algebras. Commun. Algebra 15(1-2), 145–179 (1987)

    MathSciNet  Article  Google Scholar 

  12. Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (an case). Trans. Amer. Math. Soc. 358(3), 1347–1364 (2006)

    MathSciNet  Article  Google Scholar 

  13. Chen, X. W., Shen, D., Zhou, G.: The Gorenstein-projective modules over a monomial algebra. Proc. R. Soc. Edinburgh Sect. Math. 148(6), 1115–1134 (2018)

    MathSciNet  Article  Google Scholar 

  14. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: Mutations. Sel. Math. 14(1), 59–119 (2008)

    MathSciNet  Article  Google Scholar 

  15. Fomin, S., Zelevinsky, A.: Cluster algebras i: foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    MathSciNet  Article  Google Scholar 

  16. Garcia Elsener, A., Schiffler, R.: On syzygies over 2-Calabi-Yau tilted algebras. J. Algebra 470, 91–121 (2017)

    MathSciNet  Article  Google Scholar 

  17. Geiss, Ch., Reiten, I.: Gentle Algebras are Gorenstein. Representations of algebras and related topics (45), 129 (2005)

  18. Gubitosi, V.: M-cluster tilted algebras of type Ã. Comm. Algebra 46(8), 3563–3590 (2018)

    MathSciNet  Article  Google Scholar 

  19. Happel, D., Ringel, C. M.: Tilted algebras. Trans. Am. Math. Soc. 274(2), 399–443 (1982)

    MathSciNet  Article  Google Scholar 

  20. Kalck, M.: Singularity categories of gentle algebras. Bulle Lond Math Soc 47(1) (2014)

  21. Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi–Yau. Adv. Math. 211(1), 123–151 (2007)

    MathSciNet  Article  Google Scholar 

  22. Keller, B., Reiten, I.: Acyclic Calabi-Yau categories. Compos. Math. 144(5), 1332–1348 (2008)

    MathSciNet  Article  Google Scholar 

  23. Ladkani, S.: 2-CY-tilted algebras that are not Jacobian. arXiv:1403.6814 (2014)

  24. Ladkani, S.: Finite-dimensional algebras are (m > 2)-Calabi-Yau-tilted. arXiv:1603.09709 (2016)

  25. Lu, M., Zhu, B.: Singularity categories of Gorenstein monomial algebras. arXiv:1708.00311 (2017)

  26. Murphy, G. J.: Derived equivalence classification of m-cluster tilted algebras of type An. J. Algebra 323(4), 920–965 (2010)

    MathSciNet  Article  Google Scholar 

  27. Reiten, I.: Calabi-yau tilted algebras. Sao Paulo J. Math. Sci. 4(3), 529–545 (2010)

    MathSciNet  Article  Google Scholar 

  28. Thomas, H.: Defining an m-cluster category. J. Algebra 318(1), 37–46 (2007)

    MathSciNet  Article  Google Scholar 

  29. Torkildsen, H. A.: A Geometric Realization of the m-cluster Category of Affine Type A. Comm. Algebra 43(6), 2541–2567 (2015)

    MathSciNet  Article  Google Scholar 

  30. Auslander, M., Smalø, S.: Almost split sequences in subcategories. J. Algebra 2, 426–454 (1981)

    MathSciNet  Article  Google Scholar 

  31. Auslander, M., Reiten, I.: Cohen-macaulay and Gorenstein Artin algebras. Progr. Math. 95, 221–245 (1991)

    MathSciNet  MATH  Google Scholar 

  32. Garcia Elsener, A., Schiffler, R.: On syzygies over 2-Calabi–Yau tilted algebras. J. Algebra 470, 91–121 (2017)

    MathSciNet  Article  Google Scholar 

  33. Kalck, M.: Singularity categories of gentle algebras. Bull. Lond. Math. Soc. 47(1), 65–74 (2015)

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by the Austrian Science Fund Project Number P25647- N26. The author wants to thank the researchers at Universität Stuttgart, especially Prof. Steffen Koenig and Dr. Matthew Pressland, and also would like to thank the organizers of BIREP-2017 Summer School on Gentle Algebras.


Open access funding provided by University of Graz.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ana Garcia Elsener.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Steffen Koenig

Appendix A: Auslander–Reiten translations for Gorenstein algebras by Sondre Kvamme and Matthew Pressland

Appendix A: Auslander–Reiten translations for Gorenstein algebras by Sondre Kvamme and Matthew Pressland

Let Λ be an Iwanaga–Gorenstein algebra. Since GP(Λ) is a functorially finite subcategory of modΛ, it has Auslander–Reiten sequences [30], inducing an Auslander–Reiten translation τGP on \(\underline {GP}({\Lambda })\), typically different from the Auslander–Reiten translation τΛ on \(\underline {\textup {mod}}{\Lambda }\). The goal of this appendix is to relate the objects τΛM and τGPM of \(\underline {\textup {mod}}{\Lambda }\) when M is Gorenstein projective. Indeed, we will show that these objects eventually coincide after repeated application of the syzygy functor. While this fact may not be surprising to experts, and can be deduced quickly from results already in the literature (most easily from [31, Thm. 3.7]), we give here a very direct proof, which even exhibits a natural isomorphism of functors. Moreover, we explain how this result provides a new perspective on results of Garcia Elsener (Corollary 4.6 of the present paper) and Garcia Elsener–Schiffler [32, Thm. 1] characterising Gorenstein projective modules over certain Calabi–Yau tilted algebras Λ, by relating these characterisations directly to a Calabi–Yau property of \(\underline {GP}({\Lambda })\).

We denote by \({\Omega }\colon \underline {\textup {mod}}{\Lambda }\to \underline {\textup {mod}}{\Lambda }\) the syzygy functor, taking a module to the kernel of a projective cover, and by \({\Sigma }\colon \underline {\textup {mod}}{\Lambda }\to \underline {\textup {mod}}{\Lambda }\) its left adjoint, taking a module to the cokernel of a right projΛ-approximation. The restrictions of these functors to \(\underline {GP}({\Lambda })\) are mutually inverse, the restriction of Σ being the suspension functor on this triangulated category.

Lemma A.1

The functor \({\Sigma }^{d}\colon \underline {\textup {mod}}{\Lambda }\to \underline {\textup {mod}}{\Lambda }\) has essential image in \(\underline {GP}({\Lambda })\).


Since Λ is d-Iwanaga–Gorenstein, we have \({\Omega }^{d}{\Sigma }^{d}M\in \underline {GP}({\Lambda })\) for any Λ-module M. Then \({\Sigma }^{d}{\Omega }^{d}{\Sigma }^{d}M\in \underline {GP}({\Lambda })\) since Σ preserves Gorenstein projectivity. It follows from the triangular identities for the unit and counit of the adjoint pair (Σdd) that ΣdM is a summand of ΣdΩdΣdM, and hence is itself Gorenstein projective. □

Theorem A.2

Let Λ be a finite-dimensional Iwanaga–Gorenstein algebra of Gorenstein dimension at most d. Then there is a natural isomorphism


of endofunctors of \(\underline {GP}({\Lambda })\).


Using the Yoneda embedding, it suffices to show that there is a natural isomorphism

$$\underline{\textup{Hom}}_{\Lambda}(-,{\Omega}^{d}\tau_{\textup{GP}}X)\cong\underline{\textup{Hom}}_{\Lambda}(-,{\Omega}^{d}\tau_{\Lambda} X)$$

of functors on \(\underline {\textup {mod}}{\Lambda }\), for any X ∈GP(Λ). By adjunction and the Auslander–Reiten formula for GP(Λ), we obtain natural isomorphisms


The validity of the second isomorphism depends on Lemma A.1, showing that Σd takes values in \(\underline {GP}({\Lambda })\). Alternatively, using the Auslander–Reiten formula in modΛ, we get

$$\underline{\textup{Hom}}_{\Lambda}(-,{\Omega}^{d}\tau_{\Lambda} X)\cong\underline{\textup{Hom}}_{\Lambda}({\Sigma}^{d}-,\tau_{\Lambda} X)\cong\mathrm{D}{\textup{Ext}}^{1}_{\Lambda}(X,{\Sigma}^{d}-).$$

The two right-hand sides coincide, completing the proof. □

Theorem A.3 ([32, Thm. 1])

Let Λ be a 2-Calabi–Yau tilted algebra. Then a Λ-module M is Gorenstein projective if and only if M≅Ω2τΛM in \(\underline {\textup {mod}}{\Lambda }\).


By a result of Keller and Reiten [21, Prop. 2.1], a 2-Calabi–Yau tilted algebra is Iwanaga–Gorenstein of Gorenstein dimension at most 1. Thus \({\Omega }^{2} N\in \underline {GP}({\Lambda })\) for any N ∈modΛ, and the ‘if’ part of the theorem follows immediately.

For the ‘only if’ direction, Keller and Reiten also prove [21, Thm. 3.3] that \(\underline {GP}({\Lambda })\) is a 3-Calabi–Yau category, meaning that Σ3 is a Serre functor. On the other hand, the Auslander–Reiten formula states that ΣτGP is always a Serre functor on \(\underline {GP}({\Lambda })\). Since Serre functors are unique up to natural isomorphism, the 3-Calabi–Yau property is equivalent to there being a natural isomorphism \(\tau _{\textup {GP}}\simeq {\Sigma }^{2}\). Now by Theorem A.2, using again the Iwanaga–Gorenstein property of Λ, we have

$${\Omega}^{2}\tau_{\Lambda} M\cong{\Omega}^{2}\tau_{\textup{GP}}M\cong{\Omega}^{2}{\Sigma}^{2} M\cong M.$$

We close by observing that characterisations of Gorenstein projective Λ-modules as in Theorem A.3 are closely related to Calabi–Yau properties of \(\underline {GP}({\Lambda })\) in wider generality.

Proposition A.4

Let Λ be Iwanaga–Gorenstein of Gorenstein dimension at most m. Then \(\underline {GP}({\Lambda })\) is (m + 1)-Calabi–Yau if and only if there is a natural isomorphism \({\Omega }^{m}\tau _{\Lambda }\simeq \text {Id}_{\underline {GP}({\Lambda })}\). In this case, a Λ-module M is Gorenstein projective if and only if M≅ΩmτΛM in \(\underline {\textup {mod}}{\Lambda }\).


As in the proof of Theorem A.2, \(\underline {GP}({\Lambda })\) is (m + 1)-Calabi–Yau if and only if there is a natural isomorphism \(\tau _{\textup {GP}}\simeq {\Sigma }^{m}\) on \(\underline {GP}({\Lambda })\). Since Σm has quasi-inverse Ωm on this category, this is equivalent to asking that \({\Omega }^{m}\tau _{\textup {GP}}\simeq \text {Id}_{\underline {GP}({\Lambda })}\). But Theorem A.2 tells us that \({\Omega }^{m}\tau _{\textup {GP}}\simeq {\Omega }^{m}\tau _{\Lambda }\) in this setting, and the first part of the statement follows. The second part is then proved as in Theorem A.3, replacing 2 by m. □

Note that the isomorphisms constructed in the proof of Theorem A.3 arise from a natural isomorphism in this way, using the 3-Calabi–Yau property of \(\underline {GP}({\Lambda })\) [21, Thm. 3.3]. We also deduce that a similar Calabi–Yau property holds for certain gentle m-cluster-tilted algebras.

Corollary A.5

Let Λ be an m-cluster-tilted algebra of type \(\mathbb {A}\) or \(\tilde {\mathbb {A}}\). Then \(\underline {GP}({\Lambda })\) is (m + 1)-Calabi–Yau.


By Corollary 4.6, Λ is Iwanaga–Gorenstein of Gorenstein dimension at most m, and M≅ΩmτΛM for each M ∈GP(Λ). Since Λ is a gentle algebra, meaning that \(\underline {GP}({\Lambda })\) is semi-simple [33], there must be a collection of such isomorphisms that is natural in M—for example, by first choosing such an isomorphism for each M in a set of representatives for the isoclasses of indecomposable objects, and then extending to arbitrary objects by choosing direct sum decompositions. (We use here that the ground field k is algebraically closed, so that each indecomposable has endomorphism ring k.) The result then follows by Proposition A.4. □

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elsener, A.G. Monomial Gorenstein algebras and the stably Calabi–Yau property. Algebr Represent Theor 24, 1083–1099 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • 2-Calabi–Yau tilted algebras
  • Monomial
  • Jacobian algebras
  • Gorenstein-projective
  • Stably Calabi–Yau

Mathematics Subject Classification (2010)

  • 16G20
  • 16G50